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Chapter 1

Sequences and Convergence

1.1 Absolute Values
What is an absolute value? We commonly think of it as an operation that removes negative signs.

EXAMPLE 1.1.1

|−2| = 2, |−17| = 17, |3| = 3, etc.

So, is |−x| = x for all x ∈ R? Not always! Let’s give the definition to avoid ambiguity.
DEFINITION 1.1.2

Let x ∈ R. The absolute value of x is denoted |x|, and is defined as follows:

|x| =


x, x > 0,

0, x = 0,

−x, x < 0.

This also tells us the distance from x to 0, or the magnitude (size of x).
EXAMPLE 1.1.3

How do we get the distance between two arbitrary numbers using absolute values? For example, what
is the distance from 3 to 7? 4 units. Also, |7− 3| = 4 = |3− 7|.

So, the distance from a to b is |b − a| for all a, b ∈ R. Also, |b − a| = |a − b|, which makes sense since the
distance from a to b should be the same as the distance from b to a.

1.1.1 Inequalities Involving Absolute Values
The main focus of this course is approximation. We will seek ways to approximate roots, curves, limits, etc.,
but if we make an approximation it will be useless unless we can talk about how close it is to the actual object!
So, we will look for ways to determine the maximum size of the error. Before we do this, we will need to
examine inequalities. Let’s start with the triangle inequality.
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CHAPTER 1. SEQUENCES AND CONVERGENCE 4

THEOREM 1.1.4: Triangle Inequality

Let x, y, z ∈ R. Then
|x− y| ≤ |x− z|+ |z − y|.

Proof: Since |x− y| = |y− x|, we can assume without loss of generality (WLOG) that x ≤ y. Hence, we
consider three cases.
Case 1 (z < x): Clearly, |x− y| ≤ |z − y|, which means |x− y| ≤ |x− z|+ |z − y|.
Case 2 (x ≤ z ≤ y): In this case, |x− y| = |x− z|+ |z − y|, which means |x− y| = |x− z|+ |z − y|, as
desired.
Case 3 (y < z): This time, |x− y| ≤ |x− z|, so |x− y| ≤ |x− z|+ |z − y|.

We consider a useful variant of the triangle inequality.
THEOREM 1.1.5: Triangle Inequality II

Let x, y ∈ R. Then
|x+ y| ≤ |x|+ |y|.

Proof:

|x+ y| = |x− (−y)|
≤ |x− 0|+ |0− (−y)| triangle inequality with z = 0

= |x|+ |y|.

If we want to prove |x| < δ, we just need to prove x < δ and x > −δ, that is, −δ < x < δ. So, what do the
inequalities of the form |x− a| < δ for a, δ ∈ R look like? What set does this represent? Well, it’s the set of all
x ∈ R that are less than δ units away from a. So, starting at a, we move δ-units to the left and right, which
means

|x− a| < δ ⇐⇒ −δ < x− a < δ ⇐⇒ a− δ < x < a+ δ.

So, it is the interval (a− δ, a+ δ), where we do not include the endpoints as the inequality is strict.
What about |x− a| ≤ δ? In this case,

|x− a| ≤ δ ⇐⇒ −δ ≤ x− a ≤ δ ⇐⇒ a− δ ≤ x ≤ a+ δ.

So, it is the interval [a− δ, a+ δ].
What about 0 < |x − a| < δ? Now, the distance can’t be zero which means x ̸= a. So, it translates to
(a− δ, a+ δ) \ {a} or (a− δ, a) ∪ (a, a+ δ).

EXAMPLE 1.1.6

Find the corresponding sets for the inequalities.
(1) |x− 4| < 3.
(2) 2 ≤ |x− 4| < 4.
(3) |x− 1|+ |x+ 2| ≥ 4.

Solution.
(1) |x− 4| < 3 ⇐⇒ −3 < x− 4 < 3 ⇐⇒ 1 < x < 7, so (1, 7) is the corresponding interval.
(2) 2 ≤ |x− 4| < 4 means 2 ≤ |x− 4| and |x− 4| < 4, so

(2 ≤ x− 4) ∨ (x− 4) ≤ −2 ⇐⇒ (6 ≤ x) ∨ (x ≤ 2)

and
−4 < x− 4 < 4 ⇐⇒ 0 < x < 8.
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Putting these together, we get 0 < x ≤ 2 or 6 ≤ x < 8, so (0, 2] ∪ [6, 8) is the corresponding
interval.

(3) We consider three cases.
(i) If x > 1, then both x− 1 > 0 and x+ 2 > 0, then

x− 1 + x+ 2 > 4 ⇐⇒ 2x+ 1 > 4 ⇐⇒ 2x > 3 ⇐⇒ x < 3/2.

(ii) If −2 ≤ x ≤ 1, then |x− 1| = 1− x, but |x+ 2| = x+ 2, so we get

1− x+ x+ 2 ≥ 4 ⇐⇒ 3 ≥ 4,

which is not true for any x.
(iii) If x < −2, then |x− 1| = 1− x and |x+ 2| = −x− 2, then

1− x+ (−x− 2) ≥ 4 ⇐⇒ −1− 2x ≥ 4 ⇐⇒ −5 ≥ 2x ⇐⇒ −5/2 ≥ x.

Putting it all together, we get x ≥ 3/2 or x ≤ −5/2, that is, (−∞,−5/2] ∪ (3/2,∞).

1.2 Sequences and Their Limits

1.2.1 Introduction to Subsequences

DEFINITION 1.2.1

An infinite sequence of numbers is a list of numbers in a definite order, e.g.,

a1, a2, a3, a4, . . . , an, ai ∈ R.

Notation: {a1, a2, . . . , an} or {an}∞n=1 or {an}.

Sequences can be defined explicitly (in terms of n) or recursively (in terms of previous terms).
EXAMPLE 1.2.2: Explicit Sequences

•
{

1
n+1

}∞

n=1
: 1/2, 1/3, 1/4, 1/5, . . ..

• {
√
n+ 2}∞n=2:

√
4,
√
5,
√
6, . . ..

• {(−1)n}∞n=1: −1, 1,−1, 1, . . ..

1.2.2 Recursively Defined Sequences

EXAMPLE 1.2.3: Recursive Sequences

• a1 = 1, an+1 =
√
1 + an, so a1 = 1, a2 =

√
2, a3 =

√
1 +

√
2, and so on for n ≥ 1.

• Fibonacci’s sequence: a1 = 1, a2 = 1, an+2 = an+1 + an for n ≥ 1, i.e., 1, 1, 2, 3, 5, 8, 13, . . ..

We can plot sequences on a number line, or we could think of a sequence as a function f : N → R, writing
f(n) = an, e.g., for an = 1/2 we would write f(n) = 1/2.
Why study sequences?

• Lots of continuous processes can be modelled with discrete data, as we will see.
• We can use recursive sequences to approximate solutions to equations that can’t be solved explicitly

(Newton’s Method).
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• For another (ancient) application, see page 14 of the course notes about calculating square roots.
Our goal now will be to determine how to find the limit of a sequence, that is, find what the value of the terms
of the sequence are approaching (if it exists).
We may want to build new sequences out of old ones or only discuss what happens to a sequence eventually,
that is, after a certain index.

EXAMPLE 1.2.4

For { 1
n}

∞
n=1, if we consider only the odd terms, we get 1, 1/3, 1/5, or the kth term is

1

2k − 1

for k ∈ N. This is called a subsequence.

1.2.3 Subsequences and Tails

DEFINITION 1.2.5: Subsequence

If {an} is a sequence and n1, n2, . . . is a sequence of natural numbers, where n1 < n2 < n3 < · · · , then
the sequence

{an1 , an2 , . . .} = {ank
}

is a subsequence of {an}.

One particular subsequence is {ak, ak+1, ak+2} for some k ∈ N. This is called the tail of {an} with cut-off
k.

1.2.4 Limits of Sequences
We are going to see lots of different limits this term, but we will start with sequences.

EXAMPLE 1.2.6

{ 1
n} seems like it converges to 0, or that 0 is the limit of the sequence. We saw this when we plotted the

sequence. We will eventually want a formal definition, but let’s start intuitively.

Given a sequence {an}, what does it mean to say that {an} converges to L as n goes to infinity?
What about “as n gets larger, an gets closer to L?” Unfortunately, this isn’t a good definition. For example, as
n gets larger 1

n gets closer to 0, but it also gets closer to −1, −2, and so on. But, 0 is the limit! What makes it
different? Well, the sequence gets infinitely close to 0, unlike the other numbers! Let’s try to define this again:
“the limit of {an} is L if, as n gets infinitely large, an gets infinitely close to L.” This is much better! But how
can we formalize the idea of “infinitely close?”

DEFINITION 1.2.7: Formal Definition of the Limit of a Sequence I

Let {an} be a sequence in R. For L ∈ R, we say that the sequence {an} converges to L (or that the
limit of {an} is equal to L), and we write an → L (as n → ∞), or we write lim

n→∞
ak = L, when

∀ε ∈ R>0 : ∃N ∈ R>0 : ∀n ∈ N : n ≥ N =⇒ |an − L| < ε.

We say that the sequence {an} diverges to infinity (in R) when there exists L ∈ R such that {an}
converges to L. We say that the sequence diverges (in R) when it does not converge (to any L ∈ R).
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EXAMPLE 1.2.8

Consider an = 1
n2 . We’d guess that the limit is 0. Say ε = 1

100 , can we find a large enough n ∈ N so that∣∣ 1
n2 − 0

∣∣ < 1
100 if n ≥ N? Well, we need∣∣∣∣ 1n2

− 0

∣∣∣∣ < 1

100
=⇒ 1

n2
<

1

100
=⇒ n2 > 100,

so n > 10. Let N = 11, then if n ≥ N , we get
∣∣ 1
n2 − 0

∣∣ < 1
100 . But wait! We aren’t done yet! The

definition says we need to prove it for any ε > 0, but we only proved it for ε = 1
100 . Let’s adapt the proof

to work for any ε > 0.

Proof that lim
n→∞

1
n2 = 0. Let ε > 0 be given. Let N > 1√

ε
for N ∈ N. Then, if n ≥ N , we get

∣∣∣∣ 1n2
− 0

∣∣∣∣ = 1

n2
≤ 1

N2
<

1

(1/
√
ε)2

=
1

1/ε
= ε

as desired.
The point is: we have to give a method for choosing N that works for any ε > 0. Also, the logical order of the
proof is important, so let’s do some more examples.

EXAMPLE 1.2.9

Prove that lim
n→∞

n
2n+3 = 1

2 .

Proof: Let ε > 0 be given. Let N > 1
4

(
3
ε − 6

) for N ∈ N. Then, if n ≥ N , we get:

|an − L| =
∣∣∣∣ n

2n+ 3
− 1

2

∣∣∣∣ = 3

4n+ 6
≤ 3

4N + 6
<

3

4
(
1
4 (

3
ε − 6)

)
+ 6

= ε

as desired.
Aside: We want

3

4n+ 6
< ε ⇐⇒ 3

ε
< 4n+ 6 ⇐⇒ 3

ε
− 6 < 4n ⇐⇒ 1

4

(
3

ε
− 6

)
< n.

EXAMPLE 1.2.10

Prove that lim
n→∞

n2

3n2+7n = 1
3 .

Proof: Let ε > 0 be given. Let N > 7
9ε for N ∈ N. Then, if n ≥ N , we get:

|an − L| =
∣∣∣∣ n2

3n2 + 7n
− 1

3

∣∣∣∣ = 7n

9n2 + 21n
≤ 7n

9n2
=

7

9n
≤ 7

9( 7
9ε )

= ε.

Aside: We want
7

9n
< ε ⇐⇒ 7

9ε
< n.

REMARK 1.2.11: Avoid Common Mistakes

• Don’t choose ε! Let it be arbitrary.
• Never assume |an −L| < ε, make sure you only do work in an aside with that inequality since it is
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what you are proving.
• In practice, unless you are asked to, do not use this formal definition. We will now try to develop

better methods for finding limits.

Equivalent Definitions of the Limit
When proving lim

n→∞
an = L, we are given ε > 0, and we try to find N ∈ N so that if n ≥ N , then |an − L| < ε.

But, this is the same as saying an ∈ (L− ε, L+ ε). Also, the collection of {an} for which n ≥ N is the tail of
the sequence with cut-off N . So, here’s another definition.

DEFINITION 1.2.12

lim
n→∞

an = L if for any ε > 0, the interval (L− ε, L+ ε) contains a tail of the sequence {an}.

Let’s push it further! Since the above is true for any ε > 0, if we pick any open interval (a, b) containing L,
then we can find a small enough ε > 0 so that (L− ε, L+ ε) ⊆ (a, b). Therefore, any interval containing L
also contains a tail of {an}. Let’s collect all of these alternate (but equivalent) definitions together.

THEOREM 1.2.13

The following are equivalent:
(1) lim

n→∞
an = L.

(2) For any ε > 0, (L− ε, L+ ε) contains a tail of {an}.
(3) For any ε > 0, (L− ε, L+ ε) contains all but finitely many terms of {an}.
(4) Every interval (a, b) containing L contains a tail of {an}.
(5) Every interval (a, b) containing L contains all but finitely many terms of {an}.

Clearly, changing finitely many terms of {an} does not affect the convergence or the limit.

EXAMPLE 1.2.14

Can a sequence have more than one limit? Consider {(−1)n} = −1, 1,−1, 1, . . ., it equals to both 1 and
−1 infinitely often. Could both 1 and −1 be the limits? No! Let’s prove −1 isn’t a limit.

Proof: Consider the interval (−2, 0). Clearly −1 ∈ (−2, 0), but this interval does not contain any of the
infinitely many 1’s in the sequence. So, −1 is not a limit by (5) above. A similar argument can be used
with the interval (0, 2) to show 1 is also not a limit. So, does {(−1)n} have a limit at all? Let’s prove
it doesn’t! Let ε = 1/2, and supposed for a contradiction that the sequence converges to L ∈ R. That
means the interval (L− 1/2, L+ 1/2) must contain all but finitely many terms of the sequence, that is,
but 1 and −1 must lie in that interval. But the interval is only 1 unit long! So there is not L ∈ R for
which both 1 and −1 lie inside (L− 1/2, L+ 1/2). So, {(−1)n} diverges.

A similar argument can be used to prove limits are unique.
THEOREM 1.2.15

Let {an} be a sequence in R. If {an} has a limit (finite or infinite), then the limit is unique.

Proof: Suppose for a contradiction that L and M are both limits of {an} and L ̸= M and WLOG that
L < M . Consider two intervals:

(L− 1, L+M
2 ) ∋ L, (L+M

2 ,M + 1) ∋ M.

This means, by definition, only finitely many terms of the sequence are not in the first interval and only
finitely many terms are not in the second interval. But the sequence has infinitely many terms! So, at
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least one term is in both intervals which is impossible. This is a contradiction, so L = M .
Note: This does not cover the cases where the limit is infinite.

REMARK 1.2.16: A Remark on Possible Limits

If an ≥ 0 for all n, then {an} can’t converge to a negative number! If it did, say to L < 0, then the
interval (L− 1, 0) would contain L but no terms of the sequence.

THEOREM 1.2.17

If an ≥ 0 for all n and lim
n→∞

an = L, then L ≥ 0. More generally, if α ≤ an ≤ β for all n and lim
n→∞

an = L,
then α ≤ L ≤ β.

• Q: If an > 0 for all n and lim
n→∞

an = L is L > 0?

• A: Not necessarily! Consider an = 1
n > 0, but L = 0.

1.2.5 Divergence to Infinity
Consider an = n. It is clear that the sequence is getting larger without bound, so lim

n→∞
an does not exist. That

is, {an} diverges. But we can say more! Since it does not get infinitely large, we can make a definition to
capture this.

DEFINITION 1.2.18

• We say that {an} diverges to ∞, or that the limit of {an} is equal to infinity, and we write
an → ∞ (as n → ∞), or we write lim

n→∞
an = ∞, when

∀M ∈ R>0 ∃N ∈ N ∀n ∈ N
(
n ≥ N =⇒ an > M

)
.

Equivalently, any interval of the form (M,∞) contains a tail of {an}.
• We say that {an} diverges to −∞, or that the limit of {an} is equal to negative infinity, and we

write an → −∞ (as n → ∞), or we write lim
n→∞

an = −∞, when

∀M ∈ R<0 ∃N ∈ N ∀n ∈ N
(
n ≥ N =⇒ an < M

)
.

Equivalently, any interval of the form (−∞,M) contains a tail of {an}.

EXAMPLE 1.2.19

Show lim
n→∞

(1− n) = −∞.

Proof: Let M < 0 be given, pick N > 1−M for N ∈ N. Then, if n ≥ N , we have

an = 1− n ≤ 1−N < 1− (1−M) = M.

Aside: Want 1− n < M ⇐⇒ 1−M < n.

1.2.6 Arithmetic For Limits
If we can avoid using the definition to find a limit, we should. There are certain rules we can follow to compute
lots of sequence limits. Let’s see them now!
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THEOREM 1.2.20

(1) α > 0 =⇒ lim
n→∞

nα = ∞.
(2) α < 0 =⇒ lim

n→∞
nα = 0.

THEOREM 1.2.21: Arithmetic Rules for Limits of Sequences

Let {an} and {bn} be sequences in R and let c ∈ R. Suppose that {an} and {bn} both converge with an → L
and bn → M . Then
(1) if an = C for all n, then C = L,
(2) lim

n→∞
can = cL,

(3) lim
n→∞

(an + bn) = L+M ,
(4) lim

n→∞
(an − bn) = L−M ,

(5) lim
n→∞

anbn = LM ,
(6) if M ̸= 0, lim

n→∞
an

bn
= L

M ,
(7) for all k ∈ N, lim

n→∞
an+k = L.

Proof: Exercises, but let’s prove (3) as an example. Let ε > 0 be given. Since lim
n→∞

an = L, we can find
N1 ∈ N so that if n ≥ N1, we get |an − L| < ε/2. Also, since lim

n→∞
bn = M , we can find N2 ∈ N so that

if n ≥ N2, we have |bn −M | < ε/2. Now, let N = max(N1, N2). Then, if n ≥ N we get

|(an + bn)− (L+M)| ≤ |an − L|+ |bn −M | < ε

2
+

ε

2
= ε,

where we used the triangle inequality in the first inequality.

REMARK 1.2.22

To use any of the above properties, the limits need to exist!

EXAMPLE 1.2.23

(1) lim
n→∞

3n+ 7

n+ 2
= lim

n→∞

3 + 7/n

1 + 2/n
=

lim
n→∞

3 + lim
n→∞

7/n

lim
n→∞

1 + lim
n→∞

2/n
=

3 + 0

1 + 0
= 3.

(2) lim
n→∞

n3 + n2 + 1

2n3 + 7n2 − 1
= lim

n→∞

1 + 1/n+ 1/n3

2 + 7/n− 1/n3
=

1 + 0 + 0

2 + 0 + 0
=

1

2
.

(3) lim
n→∞

n+ 1

n2 + 1
= lim

n→∞

1/n+ 1/n2

1 + 1/n2
=

0 + 0

1 + 0
= 0.

REMARK 1.2.24

You don’t need to write “arithmetic rules” every time, as we always use them! Just make sure you show
your work!

EXAMPLE 1.2.25

What if in property (5), M = 0? Anything can happen!
• lim

n→∞

1/n

1/n
= 1 even though 1/n → 0.

• lim
n→∞

1/n

1/n2
= lim

n→∞

n2

n
= lim

n→∞
n = ∞.
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• lim
n→∞

1/n2

1/n
= lim

n→∞

1

n
= 0.

Hence, we will need to handle these on an individual basis.

However, there is one thing we can say.
THEOREM 1.2.26

If lim
n→∞

bn = 0 and lim
n→∞

an

bn
exists, then lim

n→∞
an = 0.

Proof: Suppose lim
n→∞

bn = 0, and say lim
n→∞

an

bn
= k ∈ R, then

lim
n→∞

an = lim
n→∞

an
bn

= k · 0 = 0.

COROLLARY 1.2.27

If lim
n→∞

bn = 0 and lim
n→∞

an ̸= 0, then lim
n→∞

an

bn
does not exist.

EXAMPLE 1.2.28

lim
n→∞

n3 + 3n

n2 + 1
= lim

n→∞

1 + 3/n2

1/n+ 1/n3
.

However, the numerator converges to 1, while the denominator converges to 0. Therefore, the limit
does not exist.
We could also say

lim
n→∞

n3 + 3n

n2 + 1
= ∞,

which means DNE and infinitely large!

Let’s compute the limit of any ratios of powers of n.
PROPOSITION 1.2.29

lim
n→∞

b0 + b1n+ b2n
2 + · · ·+ bjn

j

c0 + c1n+ c2n2 + · · ·+ cknk
= lim

n→∞

nj

nk

[ b0
nj + b1

nj−1 + · · ·+ bj
c0
nk + c1

nk−1 + · · ·+ ck

]

=


bj
ck
, j = k,

0, j < k,

∞, j > k ∧ bj/ck > 0,

−∞, j > k ∧ bk/ck < 0.

EXAMPLE 1.2.30
•

lim
n→∞

3n+ 2

2n− 1
=

3

2
.

•
lim

n→∞

4n2 + 5n

n3 − 1
= 0.
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•
lim
n→∞

7− n4

1 + n3
= −∞.

REMARK 1.2.31

Still show work when writing solutions on a test though (e.g., dividing by highest power of n).

EXAMPLE 1.2.32

If we have something that “looks like” ∞−∞, then multiply by the conjugate!

lim
n→∞

√
n2 − 4− n = lim

n→∞

√
n2 − 4− n

√
n2 + 4 + n√
n2 + 4 + n

= lim
n→∞

n2 + 4− n2

√
n2 + 4 + n

= lim
n→∞

4√
n2 + 4 + n

= lim
n→∞

4/n√
1 + 4/n2 + 1

=
0

2
= 0.

Recursive Sequence Limits
We will examine recursive sequences more closely in 1.4, but for now, if we know a recursive sequence
converges, then we can use rule (7) to find the limit!

EXAMPLE 1.2.33

a1 = 2, an+1 = 5+an

2 . Suppose we know it has a limit, say lim
n→∞

an = L. Then, using rule (7), we get:

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

5 + an
2

=
5 + L

2
.

Therefore,
L =

5 + L

2
⇐⇒ 2L = 5 + L ⇐⇒ L = 5.

1.3 Squeeze Theorem

THEOREM 1.3.1: Squeeze Theorem for Sequences of Real Numbers

Let ⟨an⟩, ⟨bn⟩, and ⟨cn⟩ be sequences in R.
Let lim

n→∞
an = L = lim

n→∞
cn.

Suppose that
∀n ∈ N : an ≤ bn ≤ cn

Then:
lim
n→∞

bn = L.

https://proofwiki.org/wiki/Squeeze_Theorem#Sequences_of_Real_Numbers
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Proof: Let ε > 0 be given. Since an → L and cn → L, we can find N ∈ N such that if n ≥ N , then
an ∈ (L− ε, L+ ε), and cn ∈ (L− ε, L+ ε). Then, for n ≥ N ,

L− ε ≤ an ≤ bn ≤ cn ≤ L+ ε,

so bn ∈ (L− ε, L+ ε), which means lim
n→∞

bn = L.

REMARK 1.3.2

The Squeeze Theorem is great for dealing with sin / cos and (−1)n.

EXAMPLE 1.3.3

Compute the following limits.
(1) lim

n→∞
(−1)n

n2+1 .
(2) lim

n→∞
cos(n2+7)+7

n .

Solution.
(1) Notice that −1

n2+1 ≤ (−1)n

n2+1 ≤ 1
n2+1 and lim

n→∞
−1

n2+1 = 0 = lim
n→∞

1
n2+1 , so lim

n→∞
(−1)n

n2+1 = 0 by the
Squeeze Theorem.

(2) Notice that 6
n ≤ cos(n2+7)+7

n ≤ 8
n , and since lim

n→∞
6
n = 0 = lim

n→∞
8
n , we get lim

n→∞
cos(n2+7)+7

n = 0

by the Squeeze Theorem.

1.4 Monotone Convergence Theorem
First, we need to some terminology.

DEFINITION 1.4.1: Upper Bound of Set

Let S ⊆ R.
An upper bound for S (in R) is an element α ∈ R such that

∀x ∈ S : x ≤ α.

We say that S is bounded above (in R) if and only if S admits an upper bound (in R).
A lower bound for S (in R) is an element β ∈ R such that

∀x ∈ S : x ≥ β.

We say that S is bounded below (in R) if and only if S admits a lower bound (in R).
We say that S bounded (in R) if and only if it is bounded below and bounded above (in R). In this case,

∃M ∈ R : ∀x ∈ S : |x| ≤ M.

EXAMPLE 1.4.2

If S = (−1, 1), then 7 is an upper bound and −12 is a lower bound, so S is bounded. Another example
is S ⊆ [−5, 5].

https://proofwiki.org/wiki/Definition:Upper_Bound_of_Set/Real_Numbers
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DEFINITION 1.4.3

Let S ⊆ R. α is called the least upper bound of S if:
(i) α is an upper bound, and
(ii) α is the smallest, that is, if α′ is another upper bound, then α′ ≥ α.

Denote this by α = lub(S) or α = sup(S).
Similarly, β is the greatest lower bound if
(i) β is a lower bound, and
(ii) β is the largest, that is, if β′ is another lower bound, then β′ ≤ β.

Denote this by β = glb(S) or β = inf(S).

EXAMPLE 1.4.4

If S = (−1, 1), then inf(S) = −1 and sup(S) = 1.

REMARK 1.4.5

The inf(S) and sup(S) may or may not be in S. One of the properties (axioms) of R guarantees the
existence of inf and sup. If S ⊆ R is non-empty and bounded above (below), then S has sup (inf).

DEFINITION 1.4.6

We say that a sequence {an} is:
• increasing if an < an+1,
• non-decreasing if an ≤ an+1,
• decreasing if an > an+1,
• non-increasing if an ≥ an+1,
• monotonic if {an} is either non-decreasing or non-increasing.

Now, we can state the theorem!
THEOREM 1.4.7: Monotone Convergence Theorem (MCT)

Let {an} be a non-decreasing (non-increasing) sequence.
(1) If {an} is bounded above (below), then {an} converges to L = lub({an}) (L = glb({an})).
(2) If {an} is not bounded above (below), then {an} diverges to ∞ (−∞).

Proof: We will prove the non-decreasing/bounded above case, the other case is similar. Suppose {an}
is non-decreasing.
(1) Suppose {an} is bounded above and let L = lub({an}). Let ε > 0 be given. Then, L − ε < L,

which means that L − ε is not an upper bound of {an} (L is the least upper bound). So, there
exists N ∈ N so that L− ε < aN . Then, if n ≥ N , we have L− ε < aN ≤ an since the sequence
is non-decreasing. Therefore, for n ≥ N , L − ε < an ≤ L < L + ε, so the tail of {an} is in
(L− ε, L+ ε), which means lim

n→∞
an = L.

(2) Suppose {an} is not bounded above. Let M ∈ R be given. We can find N ∈ N so that M < aN .
Then, if n ≥ N , we have M < aN < an ({an} is non-decreasing). This shows lim

n→∞
an = ∞.

Introduction to Mathematical Induction

Before we can use the MCT, we need to develop one proof technique: Mathematical Induction (MATH 135 will
explore it further). Induction is a proof technique that allows us to prove an infinite number of statements.
Say we have statements P1, P2, P3, . . . , Pn, . . . for n ∈ N. If we can:
(1) Prove P1 is true (base case).
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(2) Prove: if Pk is true for some k (inductive hypothesis), then Pk+1 is true (inductive step).
Then, we can conclude that Pn is true for all n ∈ N. Think of dominoes!
We will use the MCT and induction to find the limits of recursive sequences. To do this, we follow these
steps:
(1) Prove the sequence is monotonic.
(2) Prove the sequence is bounded (above or below).
(3) Conclude the sequence converges by MCT.
(4) Find the limit using an earlier trick:

lim
n→∞

an = lim
n→∞

an+1.

Note that the order matters! We can’t perform step 4 unless we know that the sequence converges.
EXAMPLE 1.4.8

Let a1 = 1, an+1 = 3+an

2 for n ≥ 1. Prove the sequence converges and find its limit.

Solution.
(1) Let’s check a few terms: a1 = 1, a2 = 2, a3 = 5/2, so it looks like the sequence is non-decreasing.

Claim: an ≤ an+1 for all n ∈ N .
• Base Case: Is a1 ≤ a2? Yes, since a1 = 1 ≤ 2 = a2.
• Inductive Hypothesis: Suppose ak ≤ ak+1 for some k ≥ 1.
• Inductive Step: Since ak ≤ ak+1, 3 + ak ≤ 3 + ak+1, which means

3 + ak
2

≤ 3 + ak+1

2
,

that is, ak+1 ≤ ak+2.
Therefore, the sequence is non-decreasing by induction.

(2) What upper bound should we use? Don’t try to guess the lub at this point, any upper bound will
do!
Claim: an ≤ 5 for all n ∈ N.

• Base Case: a1 = 1 ≤ 5.
• Inductive Hypothesis: Suppose ak ≤ 5 for some k ∈ N.
• Inductive Step: Since ak ≤ 5, 3 + ak ≤ 8, so 3+ak

2 ≤ 4. Therefore, ak+1 ≤ 4 ≤ 5.
Therefore, an ≤ 5 for all n ∈ N by induction, so the sequence is bounded above.

(3) Since {an} is bounded above and non-decreasing, we know {an} converges by MCT.
(4) Now, we know a limit exists, say L = lim

n→∞
an. Then,

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

3 + an
2

=
3 + L

2
.

So,
L =

3 + L

2
⇐⇒ 2L+ 3L ⇐⇒ L = 3.

Therefore, lim
n→∞

an = 3.

EXAMPLE 1.4.9

Let a1 = 2, an+1 = 7 + an for n ≥ 1. Prove the sequence converges and find its limit.
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Solution. Let’s check a few terms: a1 = 2, a2 = 3, a3 =
√
10, so it looks like the sequence is

non-decreasing. Let’s prove bounded above and non-decreasing in one step!
(1) Claim: an ≤ an+1 ≤ 9 for all n ∈ N.

• Base Case: a1 = 2 ≤ 3 = a2 and a2 = 3 ≤ 9, so a1 ≤ a2 ≤ 9.
• Inductive Hypothesis: Assume ak ≤ ak+1 ≤ 9 for some k ∈ N.
• Inductive Step: Then,

ak ≤ ak+1 ≤ 9

=⇒ 7 + ak ≤
√
7 + ak+1 ≤ 4 ≤ 9

=⇒ ak+1 ≤ ak+2 ≤ 9.

So, by induction an ≤ an+1 ≤ 9 for all n ∈ N.
(2) The sequence converges by the MCT.
(3) Finally, we need to find the limit. Say L = lim

n→∞
an. Then,

L = lim
n→∞

an+1 = lim
n→∞

√
7 + an =

√
7 + L;

see A2Q6 for the last equality. So,

L =
√
7 + L =⇒ L2 = 7 + L =⇒ L2 − L− 7 = 0 =⇒ L =

1±
√
29

2
.

However, we know L = lub({an}) and a1 = 2. So, L ̸= 1−
√
29

2 since 1−
√
29

2 < 2, that is, it isn’t
even an upper bound. Hence,

L =
1 +

√
29

2
.



Chapter 2

Limits and Continuity

2.1 Introduction to Function Limits
Let’s examine lim

x→a
f(x) = L for a, L ∈ R. Intuitively, this means that f(x) gets infinitely close to L as x gets

infinitely close to a (but x ̸= a). Let’s translate this into a more precise definition.
DEFINITION 2.1.1: Limit of Real Function

Let (a, b) be an open real interval.
Let c ∈ (a, b).
Let f : (a, b) \ {c} → R.
Let L ∈ R.
We say that the limit of f(x) as x tends to c is equal to L, and we write lim

x→c
f(x) = L or we write

f(x) → L as x → c, when

∀ε ∈ R>0 : ∃δ ∈ R>0 : ∀x ∈ A : 0 < |x− c| < δ =⇒ |f(x)− L| < ε.

REMARK 2.1.2

(1) The limit is not affected by what happens at x = a.
(2) For the limit to exist, the function needs to approach L from both sides.

EXAMPLE 2.1.3

(1) Prove lim
x→2

5x+ 1 = 11.
(2) Prove lim

x→5
x2 = 25.

Solution.
(1) Let ε > 0. Choose δ = ε/5. If 0 < |x− 2| < δ, then

|f(x)− L| = |(5x+ 1)− 11| = |5x− 10| = 5|x− 2| < 5δ =
5ε

5
= ε.

(2) Let ε > 0. Choose δ = min(1, ε/11). If 0 < |x − 5| < δ, then since |x − 5| < δ ≤ 1, we have
4 < x < 6, so that |x+ 5| ≤ |6 + 5| = 11.

|x2 − 25| = |(x− 5)(x+ 5)| = |x− 5||x+ 5| ≤ 11|x− 5| < 11δ ≤ 11ε

11
= ε.

17
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As before, it is tricky to work with the formal definition. Wewill strive to establish some better techniques!
REMARK 2.1.4: Some Comments

(1) For lim
x→a

f(x) to exist, f must be defined in an open interval (α, β), containing a (except possibly
at x = a).

(2) f(a) does not affect lim
x→a

f(x).
(3) If f(x) = g(x), except possibly at x = a, then lim

x→a
f(x) = lim

x→a
g(x).

2.2 Sequential Characterization of Limits
We define R = R ∪ {−∞,∞}.

THEOREM 2.2.1: The Sequential Characterization of Limits of Functions

Let A ⊆ R be open, let f : A → R, let L ∈ R, and let a ∈ A be a limit point of A.

lim
x→a

f(x) = L

if and only if

for all real sequences {xn} in A \ {a} with xn → a we have f(xn) → L.

• ( =⇒ ) Suppose lim
x→a

f(x) = L. Let ε > 0. Since lim
x→a

f(x) = L, we can choose δ > 0 so
that 0 < |x − a| < δ =⇒ |f(x) − b| < ε. Since xn → a, we can choose N ∈ N so that
n ≥ N =⇒ |xn − a| < δ. Then for n ≥ N , we have |xn − a| < δ and we have xn ̸= a (since {xk}
is in the set A \ {a}) and hence |f(xn)− L| < ε. This shows that f(xn) → L.

• ( ⇐= ) Tricky exercise to think about.

Since we know sequences can only have one limit, we immediately get the following theorem.
THEOREM 2.2.2: Uniqueness of Limits

Let A ⊆ R, let a be a limit point, and let f : A → R. For L,M ∈ R, if lim
x→a

f(x) = L and lim
x→a

f(x) = M ,
then L = M . Similar results hold for limits x → a± and x → ±∞.

The sequential characterization can help us prove a limit does not exist.

Strategy [Showing Limits Do Not Exist]
1. Find a sequence {xn} with xn → a, xn ̸= a for which lim

n→∞
f(xn) does not exist.

2. Find two sequences (xn) and (yn)with xn → a, yn → a, xn, yn ̸= a for which lim
n→∞

f(xn) ̸= lim
n→∞

f(yn) =

M

EXAMPLE 2.2.3

Prove that lim
x→0

|x|
x

does not exist.

Solution. Let xn = 1/n and yn = −1/n. Clearly, xn → 0, yn → 0, and xn, yn ̸= 0. Since xn > 0 and
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yn < 0 for all n, we have |xn|/xn = 1 and |yn|/yn = −1 for all n. Therefore,

lim
n→∞

|xn|
xn

= 1 ̸= −1 = lim
n→∞

|yn|
yn

.

Therefore, lim
x→0

|x|
x

does not exist.

2.3 Arithmetic Rules for limits of functions
THEOREM 2.3.1: Combination Theorem for Limits of Functions

Let f, g be real functions defined on an open subset A ⊆ R, except possibly at a point a ∈ A. Let
lim
x→a

f(x) = L ∈ R and lim
x→a

g(x) = M ∈ R.
(1) ∀x ∈ R : f(x) = c =⇒ L = c.
(2) Multiple Rule.

lim
x→a

cf(x) = cL.

(3) Sum Rule.
lim
x→a

f(x) + g(x) = L+M.

(4) Product Rule.
lim
x→a

f(x)g(x) = LM.

(5) Quotient Rule.
lim
x→a

f(x)

g(x)
=

L

M
provided that M ̸= 0.

(6) Power Rule.
∀α > 0 : lim

x→a
(f(x))α = Lα.

(7) If M = 0, and lim
x→a

f(x)
g(x) exists, then L = 0.

THEOREM 2.3.2: Limits of Polynomials

If p(x) = α0 + α1x+ α2x
2 + · · ·+ αnx

n is any polynomial, then

lim
x→a

p(x) = p(a).

Proof: Exercise.

Limits of Rational Functions
Consider P (x)

Q(x) , where P,Q are polynomials.
• Case 1: If Q(a) ̸= 0, then

lim
x→a

P (x)

Q(x)
=

P (a)

Q(a)
.

• Case 2: If lim
x→a

Q(x) = 0 and lim
x→a

P (x) ̸= 0, then

lim
x→a

P (x)

Q(x)
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does not exist.
• Case 3: If lim

x→a
Q(x) = Q(a) = 0 = P (a) = lim

x→a
P (x), then (x− a) is a factor of both P (x) and Q(x), so

we can write P (x) = (x− a)P ∗(x) and Q(x) = (x− a)Q∗(x). Therefore,

lim
x→a

P (x)

Q(x)
= lim

x→a

(x− a)P ∗(x)

(x− a)Q∗(x)
= lim

x→a

P ∗(x)

Q∗(x)

and return to step 1!
EXAMPLE 2.3.3

(1) lim
x→2

x2 − 4

x2 + 3x+ 1
=

0

11
= 0.

(2) lim
x→2

x2 − 4

x2 − x− 2
= lim

x→2

(x− 2)(x+ 2)

(x− 2)(x+ 1)
= lim

x→2

x+ 2

x+ 1
=

4

3
.

2.4 One-Sided Limits
We may want to examine the behaviour of a function at a point but only from one side, instead of both sides at
the same time. Let’s see how to do that, and what the behaviour means for the overall limit.

DEFINITION 2.4.1: One-Sided Limits

Let A = (a, b) be an open real interval, let f : A → R, and let L ∈ R.
• Limit from Right.

lim
x→a+

f(x) = L ⇐⇒ ∀ε ∈ R>0 : ∃δ ∈ R>0 : ∀x ∈ A : a < x < a+ δ =⇒ |f(x)− L| < ε.

• Limit from Left.

lim
x→b−

f(x) = L ⇐⇒ ∀ε ∈ R>0 : ∃δ ∈ R>0 : ∀x ∈ A : b− δ < x < b =⇒ |f(x)− L| < ε.

EXAMPLE 2.4.2

If f(x) = |x|
x

=

{
1, x > 0,

−1, x < 0,
then lim

x→0+
f(x) = 1 and lim

x→0−
f(x) = −1

EXAMPLE 2.4.3

If f(x) =


−100, x ≤ 0,

0, 0 < x ≤ 1,

x2 + 1, x > 1,

then lim
x→1+

f(x) = 12 + 1 = 2, lim
x→1−

f(x) = 0, lim
x→0+

f(x) = 0 and

lim
x→0−

f(x) = −100.

THEOREM 2.4.4: One-sided versus Two-sided Limits

Let A be a function defined on an open real interval, let f : A → R, and let a ∈ A.

lim
x→a

f(x) exists and equals L

if and only if both one-sided limits exist and

lim
x→a−

f(x) = L = lim
x→a+

f(x).
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REMARK 2.4.5

All arithmetic rules and sequential characterization hold for one-sided limits as well.

2.5 The Squeeze Theorem
There is an analogue of the Squeeze Theorem for Sequences for functions!

THEOREM 2.5.1: Squeeze Theorem

Let a be a point on an open real interval A, and let f, g, h : A → R. If

∀x ̸= a ∈ A : g(x) ≤ f(x) ≤ h(x)

lim
x→a

g(x) = lim
x→a

h(x) = L

then
lim
x→a

f(x) = L.

EXAMPLE 2.5.2

Find the following limits.
(1) lim

x→0
x2 cos(ex + 7).

(2) lim
x→0

sin x
x .

Solution.
(1) We know that −1 ≤ cos(ex + 7) ≤ 1, so −x2 ≤ cos(ex + 7) ≤ x2. Also, lim

x→0
−x2 = 0 = lim

x→0
x2, so

by the Squeeze Theorem, lim
x→0

x2 cos(ex + 7) = 0

(2) If 0 < x < π/2, then sinx ≤ x ≤ tanx, so |sinx| ≤ |x| ≤ |tanx| if −π/2 < x < π/2. So,

1 ≤ |x|
|sinx|

≤ |tanx|
|sinx|

=
1

|cosx|
if −π

2
< x <

π

2
, x ̸= 0.

Therefore,
1 ≥

∣∣∣∣ sinxx
∣∣∣∣ ≥ |cosx|,

but sinx
x

≥ 0 and cosx > 0 on (−π/2, π/2), so

1 ≥ sinx

x
≥ cosx.

Also, lim
x→0

1 = 1 = lim
x→0

cosx, so by the Squeeze Theorem, lim
x→0

sin x
x = 0.

2.6 The Fundamental Trigonometric Limit
We have already seen that lim

x→0

sin x
x = 1. The proof relied on a geometric argument that x ≤ tanx for

x ∈ (0, π/2). Let’s look at another argument that uses areas! Proof that lim
x→0

sin x
x = 1:

Area of small triangle =
1

2
sin(x) cos(x).
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Area of pie piece =
x

2π
π =

x

2
.

Area of large triangle =
1

2
tanx.

So,
1

2
sin(x) cos(x) ≤ x

2
≤ tanx

2
=⇒ cosx ≤ x

sinx
≤ 1

cosx
.

So,
1

cosx
≥ sinx

x
≥ cosx for x ∈ (0, π/2).

lim
x→0

= 1 = lim
x→0

cosx,

so by the Squeeze Theorem,
lim

x→0+

sinx

x
= 1.

Similar arguments can show lim
x→0−

sin x
x = 1, so lim

x→0

sin x
x = 1.

Now that we have this limit, we can solve similar limits!
EXAMPLE 2.6.1

(1) lim
x→0

sin(5x)

sin(2x)
= lim

x→0

sin(5x)

5x

2x

sin(2x)

5x

2x
= (1)(1)(5/2) = 5/2, noting that lim

x→0

sin(ax)
ax = 1 for a ∈ R.

(2) lim
x→0

tan(3x)

sin(x)
= lim

x→0

x

sinx

sin(3x)

3x

1

cos(3x)

3x

x
= (1)(1)(1)(3) = 3.

EXERCISE 2.6.2

Let a, b ∈ R \ {0}. Prove that
(i) lim

x→0

sin(ax)

sin(bx)
=

a

b
,

(ii) lim
x→0

tan(ax)

tan(bx)
=

a

b
, and

(iii) lim
x→0

tan(ax)

sin(bx)
=

a

b
.

2.7 Limits at infinity and Asymptotes
We want to extend the concept of limit in two ways:
(1) Limits at infinity (x → ±∞) → horizontal asymptotes,
(2) Infinite limits (f(x) → ±∞) → vertical asymptotes.

Recall: When we say a limit = ∞, we mean it does not exist and gets infinitely large.

2.7.1 Asymptotes and Limits at Infinity
Let’s mimic the definition of sequence limit to define a limit as x±∞.

DEFINITION 2.7.1: Limit at Infinity

Let f : R → R be a real function.
Let L ∈ R.

https://proofwiki.org/wiki/Definition:Limit_of_Real_Function/Limit_at_Infinity
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lim
x→∞

f(x) = L ⇐⇒ ∀ε ∈ R>0 : ∃N ∈ R : ∀x > N =⇒ |f(x)− L| < ε.

lim
x→−∞

f(x) = L ⇐⇒ ∀ε ∈ R>0 : ∃N ∈ R : ∀x < N =⇒ |f(x)− L| < ε.

EXAMPLE 2.7.2

lim
x→∞

e−x = 0 we can see that e−x approaches 0 as x gets large.

We can see that lim
x→∞

f(x) = L means the graph of f(x) approaches the line y = L as x gets large. We have a
name for such lines.

DEFINITION 2.7.3: Horizontal Asymptote

The horizontal line y = L is a horizontal asymptote of the graph of a real function f if and only if
either of the following limits exist:
lim
x→∞

f(x) = L1

lim
x→−∞

f(x) = L2

This will be useful when we explore curve sketching later in the course. We can also define what it means for
f(x) to diverge to ±∞ as x → ±∞.

DEFINITION 2.7.4

lim
x→∞

f(x) = ∞ ⇐⇒ ∀M ∈ R>0 : ∃N ∈ R : ∀x ∈ A : x > N =⇒ f(x) > M.

Similarly, we can define lim
x→∞

f(x) = −∞ and lim
x→−∞

f(x) = ±∞.

The Squeeze Theorem also still holds in these cases!
THEOREM 2.7.5

If g(x) ≤ f(x) ≤ h(x) for all x ≥ N for some N ∈ R, and if lim
x→∞

g(x) = L = lim
x→∞

h(x), then
lim
x→∞

f(x) = L as well. We can also let x → −∞ here also!

Let’s do some examples!
EXAMPLE 2.7.6

(1) lim
x→∞

2x2 − 3x+ 7

x2 − 4x+ 5
= lim

x→∞

x2(2− 3/x+ 7/x2)

x2(1− 4/x+ 5/x2)
=

2

1
= 2.

(2) lim
x→−∞

x2 + 2x+ 1

x− 7
= lim

x→−∞

x+ 2 + 1/x

1− 7/x
= −∞. In general, for f(x) = anx

n+···+a1x+a0

bmxm+···+b1x+b0
,

lim
x→±∞

f(x) =


an

bm
, n = m,

0, m > n,

DNE, m < n.

(3) lim
x→∞

sin(3x2 + 7)

x
. Note that

−1 ≤ sin(3x2 + 7) ≤ 1 =⇒ − 1

x
≤ sin(3x2 + 7)

x
≤ 1

x
for x > 0.

https://proofwiki.org/wiki/Definition:Horizontal_Asymptote
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Taking the limit of both sides as x → ∞ yields lim
x→∞

sin(3x2+7)
x = 0 by the Squeeze Theorem.

EXERCISE 2.7.7

lim
x→−∞

cos(3x+ 2) + 2

x3 + 1
.

2.7.2 The Fundamental Log Limit
Our goal here is to use the Squeeze Theorem to prove that lim

x→∞
ln x
x = 0. First, if we look at the graphs of

y = x and y = lnx, we see that lnx < x for all x > 0. So,
lnx

x
≤ 1 for x > 0.

Since x → ∞, we may assume that x ≥ 1. Then lnx ≥ 0, so we get
lnx

x
≥ 0.

For the upper bound, there’s a trick!

0 ≤ lnx

x
=

ln(
√
x
2
)√

x
√
x

=
2√
x

ln(
√
x)√
x

≤ 2√
x
since ln(

√
x)√
x

≤ 1.

So,
0 ≤ lnx

x
≤ 2√

x

and applying the Squeeze Theorem yields the result. This tells us that x grows much faster than lnx. What
about other powers of x? Let’s see!

EXAMPLE 2.7.8

lim
x→∞

lnx

x1/50
= lim

x→∞

50 ln(x1/50)

x1/50
= (50)(0) = 0.

In fact,
lim
x→∞

lnx

xp
= 0 for any p > 0.

EXAMPLE 2.7.9

lim
x→∞

ln(xp)

x
= lim

x→∞

p lnx

x
= (p)(0) = 0.

lim
x→∞

ln(x100)√
x

= lim
x→∞

100 lnx√
x

= (100)(0) = 0.

What about exponential functions?
EXAMPLE 2.7.10

Let p ∈ R>0. Let u = ex so that x = lnu and

lim
x→∞

xp

ex
= lim

u→∞

(lnu)p

u
= lim

u→∞

(
lnu

u1/p

)p

= 0p = 0.

We can also get results when x → 0+.
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EXAMPLE 2.7.11

Let u = 1/x or x = 1/u, so x → 0+ =⇒ u → ∞ and

lim
x→0+

xp lnx = lim
u→∞

ln(1/u)

up
= lim

u→∞

− lnu

up
= 0.

This shows that xp → 0 faster than lnx → −∞. To summarize, lnx grows an order of magnitude slower than
xp, and xp grows an order of magnitude slower than px. For p > 0, as x → ∞, we can write

(lnx)p ≪ xp ≪ px ≪ xx,

where ≪ is the much less than symbol.

2.7.3 Vertical Asymptotes and Infinite Limits
If we examine a function near a point, one or both sided limits could go to ±∞.

DEFINITION 2.7.12

lim
x→a+

f(x) = ∞ ⇐⇒ ∀M ∈ R>0 : ∃δ ∈ R>0 : ∀x ∈ A : a < x < a+ δ =⇒ f(x) > M.

lim
x→b−

f(x) = ∞ ⇐⇒ ∀M ∈ R>0 : ∃δ ∈ R>0 : ∀x ∈ A : b− δ < x < b =⇒ f(x) > M.

Finally, we say lim
x→a

f(x) = ∞ if lim
x→a+

f(x) = ∞ = lim
x→a−

f(x). If lim
x→a±

= ±∞, then we say the line
x = a is a vertical asymptote of f .

REMARK 2.7.13

Reminder: Saying = ∞ means the limit does not exist and gets infinitely large.

EXAMPLE 2.7.14

(1) lim
x→1−

x2 + 1

x− 1
. We know it is ±∞ since it is of the form #/0, but is it positive or negative? If

x → 1−, then x → 1 and x < 1 so x2 + 1 > 0, x − 1 < 0, which means the whole function is
negative. Therefore, the limit is −∞.

(2) lim
x→3+

(x+ 1)(x− 7)

(x− 3)(x− 1)
= −∞. We can do a quick check “ (4)(−4)

0+(2) ” is negative.

EXAMPLE 2.7.15

Find all vertical/horizontal asymptotes for f(x) = x−3
x+1 .

Solution. Since lim
x→±∞

x−3
x+1 = 1, f has a horizontal asymptote at y = 1. Also, lim

x→−1+

x−3
x+1 = −∞, so

x = −1 is a vertical asymptote.
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2.8 Continuity

DEFINITION 2.8.1: Continuity at a Point #1

f is continuous at x = a if and only if the limit lim
x→a

f(x) exists and lim
x→a

f(x) = f(a).

Otherwise, we say f is discontinuous at x = a or that x = a is a point of discontinuity for f .

Intuitively, a function is continuous at x = a if its behaviour at x = a is determined by its behaviour near x = a.
We can also define continuity in terms of ε− δ’s.

DEFINITION 2.8.2: Continuity at a Point #2

∀ε ∈ R>0 : ∃δ ∈ R>0 : |x− a| < δ =⇒ |f(x)− f(a)| < ε.

THEOREM 2.8.3: The Sequential Characterization of Continuity

Let A ⊆ R, let a ∈ A, and let f : A → R. Then f is continuous at a if and only if for every sequence (xn) in
A with xn → a, we have f(xn) → f(a).

REMARK 2.8.4: Useful Observation

When we look at lim
x→a

f(x) and assume x ̸= a, we can write x = a + h for some h ∈ R \ {0}. Then
x → a ⇐⇒ h → 0. So we can say that f is continuous at x = a if lim

h→0
f(a+ h) = f(a).

EXAMPLE 2.8.5

• Is f(x) = x+1
x−7 continuous at x = 1? Well,

lim
x→1

x+ 1

x− 7
=

2

−6
=

−1

3

and f(1) = 2/6 = −1/3, so yes.
• Is f(x) = |x| continuous at x = 0? Well,

lim
x→0+

x = lim
x→0+

x = 0,

lim
x→0−

|x| = lim
x→0−

(−x) = 0,

so lim
x→0

|x| = 0 = |0| = f(0), so yes.
• Is f(x) = 1

x continuous at x = 0? Well,
lim
x→0

1

x

does not exist, so no.

2.8.1 Continuity of Certain Functions
Let’s look at some functions that we know are continuous.

• Polynomials. We already know that if P is a polynomial, then lim
x→a

P (x) = P (a), so polynomials are
continuous at all a ∈ R.
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• sinx. First, let’s show that lim
x→0

sinx = sin 0 = 0. For 0 < x < π/2, 0 < sinx < x. Since lim
x→0+

0 =

0 = lim
x→0+

x, we have lim
x→0

sinx = 0 by the Squeeze Theorem. Next, we know sin(−x) = − sinx, and if
x → 0−, then −x → 0+, so

lim
x→0−

= lim
x→0−

− sin(−x) = lim
−x→0+

− sin(−x) = (−1)(0) = 0.

So we get lim
x→0

sinx = 0.

• cosx. lim
x→0

cosx = lim
x→0

√
1− sin2 x for x ∈ (−π/2, π/2) =

√
1− 0 = 1 = cos 0.

Therefore, both sinx and cosx are continuous at x = 0. Let a ∈ R be given. Let’s prove that lim
x→a

sinx =

sin a.
lim
x→a

sinx = lim
h→0

sin(a+ h)

= lim
h→0

sin(a) cos(h) + sin(h) cos(a)

= sin(a)(1) + (0) cos(a)

= sin(a).

EXERCISE 2.8.6

Show that lim
x→a

cosx = cos a.

• ex. This one is surprisingly hard to prove! We would need more info about ex, like Power/Taylor series
from MATH 138, but we can do it with the following.
Fact: ex is continuous at x = 0, i.e., lim

x→0
ex = 1.

Claim: For all a ∈ R, lim
x→a

ex = ea.

Proof: We know lim
x→0

ex = e0 = 1, so let a ̸= 0 and

lim
x→a

ex = lim
h→0

ea+h = lim
h→0

eaeh = (ea)(1) = ea.

• lnx. To prove lnx is continuous on its domain, let’s use a more general theorem.
THEOREM 2.8.7

If f(x) is invertible, f(a) = b and f is continuous at x = a, then f−1 is continuous at x = b.

Proof Idea: To get the graph of f−1(x), we reflect the graph of f(x) over the line y = x. So, if f(x) is
continuous, reflecting it won’t create any discontinuities! So, we can conclude that lnx is continuous
since it is the inverse of ex.

2.8.2 Arithmetic Rules for Continuity

THEOREM 2.8.8: Operations on Continuous Functions

Let A ⊆ R, let f, g : A → R, let a ∈ A, and let c ∈ R. Suppose that f and g are continuous at a. Then
the functions cf , f + g, f − g, and fg are all continuous at a, and f/g is continuous at a provided that
g(a) ̸= 0.

Proof: Easy consequences of the corresponding limit rules.
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EXAMPLE 2.8.9

Consider f(x) = x2+x−2
x2−4x+3 = (x−1)(x+2)

(x−1)(x−3) . All component functions are continuous, so the only possible
discontinuities are at x = 1 and x = 3.
x = 1: lim

x→1
f(x) = lim

x→1

(x−1)(x+2)
(x−1)(x−3) = lim

x→1

x+2
x−3 = −3

2 exists, but f(1) does not exist, so f is not continuous
at x = 1.
x = 3: lim

x→3+
= ∞, so f is not continuous at x = 3. Therefore, f is continuous on (−∞, 1)∪(1, 3)∪(3,∞).

If we defined f(1) = −3/2, then f would be continuous at x = 1.

THEOREM 2.8.10: Composition of Continuous Functions

Let A,B ⊆ R, let f : A → R, let g : B → R, and let h = g ◦ f : C → R where C = A ∩ f−1(B).
(1) If f is continuous at a ∈ C and g is continuous at f(a), then h is continuous at a.
(2) If f is continuous (on A) and g is continuous (on B), then h is continuous (on C).

Proof: Note that (2) follows immediately from (1), so it suffices to prove (1). Suppose f is continuous
at a ∈ A and g is continuous at b = f(a) ∈ B. Let (xn) be a sequence in C with xn → a. Since f is
continuous at a, we have f(xn) → f(a) = b by the Sequential Characterization of Continuity. Since
(f(xn)) is a sequence inB with f(xn) → b and since g is continuous at b, we have g(f(xn)) → g(b) by the
Sequential Characterization of Continuity. Thus, we have h(xn) = g(f(xn)) → g(b) = g(f(a)) = h(a).
We have shown that for every sequence (xn) in C with xn → a we have h(xn) → h(a). Thus, h is
continuous at a by the Sequential Characterization of Continuity.

EXAMPLE 2.8.11

cos(ex
2

) is continuous at each a ∈ R since x2, ex, and cosx are continuous by the Composition of
Continuous Functions.

2.8.3 Continuity On An Interval
We should make it clear what we mean by ‘continuous on an interval.’ We will need to treat open and closed
intervals separately.

DEFINITION 2.8.12: Continuity on an Interval (Open)

Let f be a real function defined on an open interval (a, b). f is continuous on (a, b) if and only if it is
continuous at every point of (a, b).

What about closed intervals? The problem is that at the endpoints, f may not be defined outside!
EXAMPLE 2.8.13

f(x) =
√
x, the domain is [0,∞). Technically, lim

x→0

√
x does not exist since lim

x→0−

√
x is not defined. But

we would still like to say √
x is continuous at x = 0. Just ignore x < 0.

DEFINITION 2.8.14: Continuity on an Interval (Closed)

Let f be a real function defined on a closed interval [a, b]. f is continuous on [a, b] if and only if it is:
(i) f is continuous on (a, b),
(ii) lim

x→a+
f(x) exists and lim

x→a+
f(x) = f(a), and

(iii) lim
x→b−

f(x) exists and lim
x→b−

f(x) = f(b).
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In other words, we only consider continuity (and limits) as we approach from inside the interval in question.
So, we can say that √x is continuous on [0,∞).

2.8.4 Types of Discontinuities
Now that we know what it means for a function to be continuous, let’s look at the various ways it can be
discontinuous.
For f(x) to be continuous at x = a, we need lim

x→a
f(x) = f(a). We classify four kinds of discontinuities.

(I) If lim
x→a

f(x) exists, but lim
x→a

f(x) ̸= f(a), then we say that f has a removable discontinuity.

EXAMPLE 2.8.15

f(x) =

{
x, x ̸= 1,

3, x = 1.
lim
x→1

f(x) = 1 ̸= 3 = f(1).

REMARK 2.8.16

Called “removable” because we could re-define f(x) at x = a to equal the limit and “remove” the
discontinuity. These are the least serious kinds of discontinuity.

(II) lim
x→a

f(x) does not exist, but both lim
x→a+

f(x) and lim
x→a−

f(x) exist (so are finite, but don’t agree). Then
we say that f(x) has a (finite) jump discontinuity.

EXAMPLE 2.8.17

f(x) =

{
x, x ≤ 0,

3, x > 0.
lim

x→0+
f(x) = 3, but lim

x→0−
f(x) = 0, so lim

x→0
f(x) does not exist. Therefore,

f(x) has a jump discontinuity at x = 3.

(III) If one or both of lim
x→a+

f(x) or lim
x→a−

is ±∞, then we say that f has a infinite discontinuity at x = a.

EXAMPLE 2.8.18

f(x) = 1
x . lim

x→0+
f(x) = ∞, lim

x→0−
f(x) = −∞. So f has an infinite discontinuity at x = 0.

(IV) If lim
x→a

f(x) does not exist, but f is bounded near x = a and is oscillating infinitely often near x = a, then
f has an oscillatory discontinuity at x = a.

EXAMPLE 2.8.19

f(x) = sin(1/x). lim
x→0

f(x) does not exist.

REMARK 2.8.20

Note that for types II, III, and IV, there is no easy way to get rid of the discontinuity by simply re-defining
f(a). So, they are essential singularities or essential discontinuities.

2.9 The Intermediate Value Theorem
One important tool we can use if we know a function is continuous is:
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THEOREM 2.9.1: Intermediate Value Theorem (IVT)

Let A = [a, b] ⊆ R be a real interval, f : A → R be continuous on A, and let α ∈ R lie between f(a) and
f(b). That is, either f(a) < α < f(b) or f(b) < α < f(a). Then ∃c ∈ (a, b) such that f(c) = α.

The proof is beyond the scope of the course, but it is intuitively clear! If f is above α at one point and
below at another, then somewhere in between f(x) = α, as long as f is “nice” (i.e., continuous).

EXAMPLE 2.9.2

Prove that f(x) = x5 − 2x3 − 2 has a root between 0 and 2.

Solution. Note that f is a polynomial, so it is continuous on [0, 2]. Also, f(0) = −2 < 0, f(2) = 14 > 0,
so by the IVT, there exists c ∈ (0, 2) such that f(c) = 0.

EXAMPLE 2.9.3

Prove that there exists a point c ∈ (0, 1) such that cos(c) = c.

Solution. Let’s look at the function f(x) = cosx− x and prove it equals zero for some c ∈ (0, 1). First,
f is continuous since both cosx and x are. Also, f(0) = cos(0)− 0 = 1 > 0, f(1) = cos(1)− 1 < 0 since
cos(1) < 1. Therefore, by the IVT, there exists a point c ∈ (0, 1) so that f(c) = 0 =⇒ cos(c) − c =
0 =⇒ cos(c) = c.

REMARK 2.9.4

The issue with the IVT is that it doesn’t give us any indication of what c is! It also doesn’t say that c is
unique! However, we can use the IVT to estimate solutions.

2.9.1 Approximating Solutions to Equations
Let’s start with polynomials!

• If P (x) is a polynomial of degree 1, how can we solve P (x) = 0? Easy! ax+ b = 0 =⇒ x = −b/a.
• Degree 2? Quadratic Formula!
• Degree 3 or 4? There are also formulas for these.
• Degree 5 or higher? No formula exists! But we can use the IVT to approximate solutions!
EXAMPLE 2.9.5

Recall we showed P (x) = x5 − 2x3 − 2 has a root in (0, 2). Can we narrow it down further? Well,
P (1) = 15 − 2(1)3 − 2 = −3 < 0, so P (2) > 0, P (1) < 0, and so there is a root somewhere between
x = 1 and x = 2.
Check the new midpoint! P (3/2) = −37/32 < 0, so there is a root between x = 3/2 and x = 2.
New midpoint is 7/4, P (7/4)− 3.694 > 0, so the root is between x = 3/2 and x = 7/4. We could keep
going or use a computer!
The method is great because each additional step cuts the potential error in half! Also, since 1/24 =
1/16 < 1/10, every four iterations give us another decimal place of accuracy. 1/210 < 1/1000, so every
10 iterations gives 3 decimal places of accuracy.
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REMARK 2.9.6

We can use this method on functions that aren’t polynomials too! It is explored in the next section.

2.9.2 The Bisection Method
DEFINITION 2.9.7: Bisection Method

Let f be a real function such that:
f is continuous over a closed interval [a, b]
f(a) and f(b) are of opposite sign.

The bisection method is an iterative technique for finding an approximation to at least one solution to
the equation f(x) = 0 to any desired accuracy.

So, we assume that f(a)f(b) < 0 and that a < b.
We evaluate c =

a+ b

2
, thereby bisecting [a, b].

We evaluate f(c).
If f(c) = 0, then we have a solution to f(x) = 0.
Otherwise, f(c) is of opposite sign to either f(a) or f(b).

If f(c) is of opposite sign to f(a), then there exists a solution to f(x) = 0 in [a, c].
If f(c) is of opposite sign to f(b), then there exists a solution to f(x) = 0 in [c, b].
In either case, a closed interval has been constructed of half the length of [a, b].

This process can be repeated until the interval of interest is arbitrarily small, enabling the solution to be
known to whatever accuracy is required.

REMARK 2.9.8

The bisection method is good, but later we will see Newton’s Method which is more efficient.

2.10 The Extreme Value Theorem
It turns out that continuity on a closed interval is different from continuity on an open interval: we can say
more about a function on a closed interval! But first, we need some definitions.

DEFINITION 2.10.1

Suppose f : I → R, where I is an interval.
• c is a global maximum for f on I if and only if

∃c ∈ I : ∀x ∈ I : f(x) ≤ f(c).

• c is a global minimum for f on I if and only if

∃c ∈ I : ∀x ∈ I : f(x) ≥ f(c).

• c is a global extremum for f on I if it is either a global maximum or a global minimum.

REMARK 2.10.2

Global max/mins are also called absolute max/mins.

• If f is defined on an interval I, does f achieve both its global max and global min?



CHAPTER 2. LIMITS AND CONTINUITY 32

• No! Consider f(x) = x on (0, 1). f has neither a global max nor a global min!
The max/min look like they should be at x = 1 and x = 0, but these aren’t in the interval!

EXAMPLE 2.10.3

f(x) = x2 on (−1, 1). f has a global min at x = 0, but no global max again! Okay, but let’s include the
endpoints! Is that enough? No, unfortunately.

EXAMPLE 2.10.4

f(x) = 1
x on [−1, 1]. No global max/min again! f goes to ±∞ as x → 0±.

So what conditions do we need to guarantee that f has a global max/min? It turns out that we need the
interval to be closed and for f to be continuous.

THEOREM 2.10.5: Extreme Value Theorem for a Real Function (EVT)

Let f be a real function which is continuous in a closed real interval [a, b].
Then:

∃c1, c2 ∈ [a, b] : ∀x ∈ [a, b] : f(c1) ≤ f(x) ≤ f(c2).

The issue we face now is how to actually find the global extrema. The EVT doesn’t tell us how! Also, as we
saw in the f(x) = x2 example, they aren’t always at the endpoints.
We will return to this when we have more tools, in a few weeks.
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Derivatives

3.1 Instantaneous Velocity
Suppose you are driving down a highway. Every 30 minutes you record your distance:

Time (min) 0 30 60 90 120 150 180
Distance (km) 0 55 100 130 200 250 300

• What was your average speed in these three hours?

Average speed =
distance
time =

300 km
1.5 h = 100 km/h.

• First 1.5 hours?
130

1.5
≈ 86.6 km/h.

• Last 1.5 hours?
300− 130

1.5
≈ 113 km/h.

In general, the formula for the average velocity, Vave from t = t0 to t = t1 is

Vave =
s(t1)− s(t0)

t1 − t0
,

where s(t) is the distance at time t. To get the instantaneous velocity, we need to use limits! The instantaneous
velocity at t = t0 is

lim
t→t0

s(t)− s(t0)

t− t0
or

lim
h→0

s(t0 + h)− s(t0)

h
.

EXAMPLE 3.1.1

Find the instantaneous velocity for s(t) = t2 + 3t at t = 1, t = 2, and t0 ∈ R.

Solution.

33
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• lim
h→0

s(1 + h)− s(1)

h
= lim

h→0

(1 + h)2 + 3(1 + h)− (12 + 3(1))

h

= lim
h→0

5h+ h2

h

= lim
h→0

(5 + h)

= 5.

• lim
h→0

(2 + h)2 + 3(2 + h)− (23 + 3(2))

h
= lim

h→0

7h+ h2

h

= 7.

• lim
h→0

(t0 + h)2 + 3(t0 + h)− (t20 + 3t0)

h
= lim

h→0
(2t0 + 3 + h)

= 2t0 + 3.
The instantaneous velocity is a special case of a derivative!

3.2 Definition of the Derivative
We can perform the same analysis that we did on s(t) in the previous section on any function!

DEFINITION 3.2.1

The average rate of change of f(x) from x = a to x = b is

fave =
f(b)− f(a)

b− a
.

DEFINITION 3.2.2

The instantaneous rate of change of f(x) at x = a, or the derivative of f(x) at x = a, denoted f ′(a) is
defined as

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a
.

If this limit exists, we say that f is differentiable at x = a.

3.2.1 The Tangent Line

DEFINITION 3.2.3

The tangent line to the graph of f at x = a is the line passing through (a, f(a)) with slope m = f ′(a).
It follows that the equation of the tangent line is

y = f(a) + f ′(a)(x− a).

EXAMPLE 3.2.4

Find the equation of the tangent line to f(x) = x2 + x+ 1 at x = 3.
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Solution. First, we should compute f ′(3):

f ′(3) = lim
h→0

f(3 + h)− f(3)

h

= lim
h→0

(3 + h)2 + (3 + h) + 1− (32 + 3 + 1)

h

= lim
h→0

9 + 6h+ h2 + 3 + h+ 1− 9− 3− 1

h

= lim
h→0

7h+ h2

h

= lim
h→0

(7 + h)

= 7.

So, f ′(3) = 7. The point on the graph is (3, f(3)) = (3, 13). So, the tangent line is

y = 13 + 7(x− 3) = 13 + 7x− 21 = 7x− 8.

REMARK 3.2.5

Can’t define the derivative as the slope of the tangent line! Without knowing what the derivative is first,
we can’t even define the tangent line!

3.2.2 Differentiability versus Continuity
• Q: Does continuity imply differentiability?
• A: No! Consider f(x) = |x| at x = 0. Clearly,

lim
x→0

|x| = 0 = |0|,

so f is continuous at x = 0, but

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h|
h

does not exist. Therefore, f is not differentiable at x = 0. Therefore, continuity does not imply
differentiability.

• Q: Does differentiability imply continuity?
• A: Yes!
THEOREM 3.2.6: Differentiability Implies Continuity

Let A ⊆ R be open, let f : A → R and let a ∈ A. If f is differentiable at a, then f is continuous at a.

Proof: We have
f(x)− f(a) =

f(x)− f(a)

x− a
(x− a) → f ′(a) · 0 = 0 as x → a

and so
f(x) =

(
f(x)− f(a)

)
+ f(a) → 0 + f(a) = f(a) as x → a.

This proves that f is continuous at a.
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3.3 The Derivative Function
DEFINITION 3.3.1: The Derivative Function

We say that f is differentiable on an interval I if f ′(a) exists for each a ∈ I. In this case, we define the
derivative function as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, x ∈ I.

Alternative (Leibniz) notation:
f ′(x) =

df

dx
=

d

dx
(f),

where “ d
dx” is called a differential operator.

If y = f(x), write dy
dx . For f ′(a), write df

dx

∣∣∣
x=a

.

Let’s look at some examples!
EXAMPLE 3.3.2

For f(x) = 7, find f ′(x) for x ∈ R.

Solution.
f ′(x) = lim

h→0

f(x+ h)− f(x)

h
= lim

h→0

7− 7

h
= 0.

Therefore, f ′(x) = 0 for all x ∈ R.

EXAMPLE 3.3.3

Find the equation of the tangent line to f(x) = x2 + 3x+ 2 at x = 2.

Solution. The tangent line passes through (a, f(a)) = (2, f(2)) = (2, 12) since f(2) = 22+3(2)+2 = 12.
Next,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 + 3(x+ h) + 2− x2 − 3x− 2

h

= lim
h→0

x2 + 2xh+ h2 + 3x+ 3h− x2 − 3x

h

= lim
h→0

2xh+ h2 + 3h

h

= lim
h→0

(2x+ h+ 3)

= 2x+ 3,

which gives f ′(2) = 2(2) = 3 = 7. Therefore, the tangent line to f at x = 2 is

y = f(2) + f ′(2)(x− 2) = 12 + 7(x− 2) = 12 + 7x− 14 = 7x− 2.

REMARK 3.3.4

• Much faster than computing f ′(a) each time!
• We will soon learn ways to find f ′(x) much faster, but if asked to use the definition, then you
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must use the formula
f ′(x) = lim

h→0

f(x+ h)− f(x)

h
.

EXAMPLE 3.3.5

Using the definition, find f ′(x) where
(1) f(x) = x;
(2) f(x) = x2;
(3) f(x) = x3;
(4) f(x) =

√
x.

Solution.
(1) f ′(x) = lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

x+ h− x

h

= lim
h→0

h

h

= 1.

(2) f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

2xh+ h2

h

= lim
h→0

(2x+ h)

= 2x.

(3) f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)3 − x3

h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h

= lim
h→0

3x2h+ 3xh2 + h3

h

= lim
h→0

(3x2 + 3xh+ h2)

= 3x2.
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(4) f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

√
x+ h−

√
x

h
·
√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

x+ h− x

h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

=
1

2
√
x
.

Higher-Order Derivatives

DEFINITION 3.3.6

If f is differentiable with derivative f ′ and f ′ is also differentiable, then we call d
dx (f

′) the second
derivative of f , denoted f ′′(x) or f (2)(x), or d2f

dx2 .
In general, f (n+1)(x) = d

dx (f
(n)(x)), where f (n) is the nth derivative.

EXERCISE 3.3.7

Prove the following with the limit definition, where f(x) = x4.
• f ′(x) = 4x3.
• f ′′(x) = 12x2.
• f (3)(x) = 24x.
• f (4) = 24.
• f (5) = 0.

Note that using the limit definition is very inefficient (not to mention awful and ugly). So, let’s develop some
rules to help us calculate derivatives more quickly!

3.4 Derivatives of Elementary Functions
Now that we know the definition of the derivative, let’s work on finding derivatives of elementary functions to
speed up the process.

• Constants: If f(x) = c where c ∈ R, then f ′(x) = 0.
• Lines: If f(x) = mx+ b where m, b ∈ R, then f ′(x) = m.
• Quadratics: If f(x) = ax2 + bx+ c where a, b, c ∈ R and a ̸= 0, then f ′(x) = 2ax+ b.

3.4.1 The Derivative of sinx and cosx

First, we need to prove a different claim:

lim
x→0

cosx− 1

x
= 0.
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lim
x→0

cosx− 1

x
· cosx+ 1

cosx+ 1
= lim

x→0

cos2 x− 1

x(cosx+ 1)

= lim
x→0

− sin2 x

x(cos(x+ 1))

= lim
x→0

sinx

x
· − sinx

cosx+ 1

= 1 · 0
= 0,

using the fundamental trigonometry limit. Now, we can compute (sinx)′.

(sinx)′ = lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cos(h) + cosx sin(h)− sinx

h

= lim
h→0

sin(h)

h
cosx+

(
cos(h)− 1

h

)
sinx

= 1 · cosx+ 0 · sinx
= cosx.

EXERCISE 3.4.1

Show that (cosx)′ = − sinx.

3.4.2 The Derivative of ex

First, what is the number e? There are lots of ways to define it, for example: lim
x→∞

(1+ 1
x )

x = e or ∑∞
n=0

1
n! = e.

But for us, we will define e to be the unique number a ∈ R such that the tangent line to ax has slope 1 at
x = 0. That is,

lim
h→0

eh − e0

h
= 1 =⇒ lim

h→0

eh − 1

h
= 1.

So, we get (ex)′ = lim
h→0

ex+h−ex

h = lim
h→0

ex( e
h−1
h ) = ex. So, (ex)′ = ex.

3.7 Arithmetic Rules for Differentiation
Now that we know how to find the derivatives of certain basic functions, let us look at some rules that tell us
how to differentiate combinations of functions.

THEOREM 3.7.1: Arithmetic Rules for Differentiation

Suppose f and g are differentiable at x = a.
(1) Constant Multiple Rule. Let h(x) = cf(x). Then h is differentiable at x = a and

h′(a) = cf ′(a).

(2) Sum Rule. Let h(x) = f(x) + g(x). Then h is differentiable at x = a and

h′(a) = f ′(a) + g′(a).

(3) Product Rule. Let h(x) = f(x)g(x). Then h is differentiable at x = a and

h′(a) = f ′(a)g(a) + f(a)g′(a).
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(4) Reciprocal Rule. Let h(x) = 1
g(x) . If g(a) ̸= 0, then h is differentiable at x = a and

h′(a) = − g′(a)

[g(a)]2
.

(5) Quotient Rule: Let h(x) = f(x)
g(x) . If g(a) ̸= 0, then h is differentiable at x = a and

h′(a) =
f ′(a)g(a)− f(a)g′(a)

[g(a)]2
.

Proof:
(1) Easy exercise.
(2) Easy exercise.
(3) (fg)′(a) = lim

h→0

f(a+ h)g(a+ h)− f(a)g(a)

h

= lim
h→0

f(a+ h)g(a+ h)− f(a+ h)g(a) + f(a+ h)g(a)− f(a)g(a)

h

= lim
h→0

f(a+ h)
g(a+ h)− g(a)

h
+ g(a)

f(a+ h)− f(a)

h

= f(a)g′(a) + g(a)f ′(a).

(4)
(
1

f

)′

(a) = lim
h→0

1
f(a+h) −

1
f(a)

h

= lim
h→0

f(a)− f(a+ h)

hf(a+ h)f(a)

= lim
h→0

−(f(a+ h)− f(a))

h

1

f(a+ h)f(a)

=
−f ′(a)

[f(a)]2
.

(5) We can combine the product and reciprocal rules!
(
f

g

)′

(a) =

(
f
1

g

)′

(a)

= f ′(a)
1

g(a)
+ f(a)

(
1

g

)′

(a)

=
f ′(a)

g(a)
− f(a)g′(a)

[g(a)]2

=
f ′(a)g(a)− f(a)g′(a)

[g(a)]2
.

THEOREM 3.7.2: The Power Rule for Differentiation

Assume that α ∈ R, α ̸= 0, and f(x) = xα. Then f is differentiable and

f ′(a) = αxα−1,

where xα−1 is defined.

In general, the proof is difficult. If α ∈ N, then it is a simple application of the Binomial Theorem. For α ∈ Q,
it is possible with more tools (chain rule and inverse function theorem). But for general α ∈ R, we would need
more tools, and it outside the scope of this course. So, we omit the proof. Let’s look at some examples!
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EXAMPLE 3.7.3

(1) f(x) = x2 sinx.
f ′(x) = (x2)′ sinx+ x2(sinx)′ = 2x sinx+ x2 cosx.

(2) f(x) = x4−1
x−7 .

f ′(x) =
(x− 7)(x4 + 1)′ − (x4 + 1)(x− 7)′

(x− 7)2
=

(x− 7)(4x3)− (x4 + 1)(1)

(x− 7)2
.

(3) f(x) = secx = 1
cos x .

f ′(x) =
−(cosx)′

cos2 x
=

sinx

cos2 x
=

sinx

cosx

1

cosx
= tanx secx.

(4) f(x) = ex cosx.
f ′(x) = ex cosx− ex sinx.

(5) f(x) = 3x5.

f ′(x) = 15x4, f ′′(x) = 60x3, f (3)(x) = 180x2, f (4)(x) = 360x, f (5)(x) = 360, f (≥6)(x) = 0.

3.8 The Chain Rule
THEOREM 3.8.1: Chain Rule

Let A,B ⊆ R be open, let f : A → R, let g : B → R, and let h = g ◦ f : C → R, where C = A ∩ f−1(B).
Let a ∈ C and let b = f(a) ∈ B. Suppose that f is differentiable at a and g is differentiable at b. Then h is
differentiable at a with

h′(a) = g′(f(a))f ′(a).

In Leibniz notation, if z = g(y) and y = f(x), then

dz

dx
=

dz

dy

dy

dx
.

The proof is quite involved, for a geometric argument see the course notes.

COROLLARY 3.8.2: Generalized Power Rule

If g(x) = f(x)α for α ∈ R \ {0}, then

g′(x) = αf(x)α−1f ′(x).

EXAMPLE 3.8.3

Find f ′(x).
(1) f(x) = (3x2 + 2x+ 7)19.
(2) f(x) = sin(ex + xe).
(3) f(x) = esin(x

2).

Solution.
(1) f ′(x) = 38(3x+ 1)(3x2 + 2x+ 7)18.
(2) f ′(x) = cos(ex + xe)(ex + exee−1).
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(3) f ′(x) = esin(x
2)(sin(x2))′ = esin(x

2) cos(x2)(x2)′ = esin(x
2) cos(x2)(2x).

Also, with the chain rule and the derivative of ex, we can get the derivative of ax for a > 0.
ax = ex ln(a) =⇒ (ax)′ = (ex ln(a))′ = ex ln(a)(x ln(a))′ = ax ln(a).

EXAMPLE 3.8.4

f(x) = 23x + 5cos x. f ′(x) = 23x ln(2)(3) + 5cos x ln(5)(− sinx).

3.9 Derivatives of Other Trigonometric Functions
So far, we’ve seen:

(sinx)′ = cosx

(cosx)′ = − sinx

(secx)′ = secx tanx.

EXAMPLE 3.9.1

(tanx)′ =

(
sinx

cosx

)′

=
cosx(sinx)′ − sinx(cosx)′

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x

= sec2 x.

EXERCISE 3.9.2

Prove that (cotx)′ = − csc2 x and (cscx)′ = − cscx cotx.

Recap:
f(x) f ′(x)

sinx cosx
cosx − sinx
tanx sec2 x
cotx − csc2 x
secx secx tanx
cscx − cscx cotx

3.5 Tangent Lines and Linear Approximation
The main idea of this section is: general functions are hard to understand, while lines are easy to understand.
So, let’s develop a way to approximate a function with a line!
More precisely, for a differentiable function f , we want to find a linear function h(x) so that f(a) = h(a),
f ′(a) = h′(a), and if x is close to a, then f(x) is close to h(x). How do we find h(x)? Well, if f is differentiable,
then

lim
x→a

f(x)− f(a)

x− a
= f ′(a).
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So, if x is close to a, then
f(x)− f(a)

x− a
≈ f ′(a).

Solving for f(x), we get
f(x) ≈ f(a) + f ′(a)(x− a).

Hence, let’s define
l(x) = f(a) + f ′(a)(x− a).

This is a good choice for h(x). Note that l(x) is the tangent line to f(x) at (a, f(a)), which leads us to the
following definition.

DEFINITION 3.5.1: Linearization, Tangent Line

When f : A → R is differentiable at x = a with derivative f ′(a), the function

l(x) = f(a) + f ′(a)(x− a)

is called the linearization (linear approximation) of f at x = a. Note that the graph y = l(x) of the
linearization is the line through the point (a, f(a)) with slope f ′(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

EXAMPLE 3.5.2

For f(x) = √
x, find the linearization at x = 4. Use this to approximate

√
3.98 and

√
4.05.

Solution. f(4) = 2, f ′(x) = 1
2
√
x
, so f ′(4) = 1

4 . Hence, the linearization of f at x = 4 is

l(x) = 2 +
1

4
(x− 4) =

x

4
+ 1.

Then,
√
3.98 ≈ l(3.98) = 1 + 3.98/4 = 1.995 and

√
4.05 ≈ l(4.05) = 1 + 4.05/4 = 2.0125. These values

are fairly close to the “exact” values:
√
3.98 = 1.994993734326 . . . and

√
4.05 = 2.0124611797498106 . . ..

Q: From the graph of f(x), how can we tell if these are over- or under-estimates? They are overestimates since
the line is above the graph (TODO image).

REMARK 3.5.3

Note that this is only a good approximation nearby x = 4. If we try to approximate
√
9, we get√

9 = l(9) = 1 + 9/4 = 3.25. The exact value is
√
9 = 3 (obviously).

3.5.1 Error in Linear Approximation
Without an upper bound on the error, an approximation is useless! Note that

|error| = |f(x)− l(x)|,

i.e., the distance from f(x) to l(x).
• Q: What factors affect the size of the error?
• A: First, the farther we go from x = a, the larger the error gets! Also, how curved the graph is also

affects it. Of course, if we don’t fully understand f(x), we can’t calculate the error exactly, but we can
approximate it! How do we quantify “more curved?” Well, we can say the slopes of the tangent lines are
changing faster on the more curved graph.
Hence, the rate of change of f ′(x) is measured by f ′′(x), so |f ′′(x)| being larger means a larger error.
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THEOREM 3.5.4: The Error in Linear Approximation

Assume f is such that |f ′′(x)| ≤ M for each x in an interval I containing a point a. Then∣∣f(x)− l(x)
∣∣ ≤ M

2
(x− a)2

for each x ∈ I.

This is a special case of Taylor’s Inequality which we will discuss later.

EXAMPLE 3.5.5

Find an upper bound on the error using l(x) at x = 4 to approximate √
x on [1, 6].

Solution. We know that f ′(x) = 1
2
√
x
, so f ′′(x) = − 1

4x3/2 . So, if x ∈ [1, 6], we have

|f ′′(x)| =
∣∣∣∣− 1

4x3/2

∣∣∣∣ ≤ 1

4
= M.

Hence,
|error| = |l(x)− f(x)| ≤ M

2
(x− 4)2 ≤ 1

8
(1− 4)2 =

9

8
,

where we note that the maximum of |x− 4| is 3, so we let x = 1 in the final inequality.

3.5.2 Applications of Linear Approximation
We will explore one application: estimating change. (Qualitative analysis is another that we will discuss
later).
Suppose we are looking at f(x) near x = a. We want to know how much it could change if we move to a point
x1 near x = a. That is, we want to know ∆y = f(x1)− f(a) if we change the input by ∆x = x1 − a. Then,
using f(x) ≈ l(x), we get

∆y = f(x1)− f(a) ≈ l(x1)− f(a) = f ′(a)(x1 − a) = f ′(a)∆x.

So, ∆y = f ′(a)∆x.
EXAMPLE 3.5.6

Suppose you are inflating a giant spherical balloon and it currently has a radius of 20cm. You exhale
once and it goes up to 20.01m. Then, the change in volume would be

∆V = V ′(20)∆r,

where V (r) = 4
3πr

3. So, V ′(r) = 4πr2 and V ′(20) = 1600π. Therefore,

∆V = 1600π(0.01) = 16π,

so the volume would increase by approximately 16πm3.

REMARK 3.5.7

For a qualitative analysis, we will explore it more when we discuss Taylor polynomials.
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3.6 Newton’s Method
We have a method for finding zeros of a function already: The Bisection Algorithm. Another way is using
Newton’s Method, which converges much faster but has its own issues as we will see!
Idea: to solve f(x) = 0, start with an initial guess, call it x1. To get the next x-value, find the intersection of
the tangent line l(x) at x = x1 and the x-axis. The numbers x1, x2, x3, . . . converge to a root (hopefully)! Let’s
find a formula for x2, x3, . . ..
Given x1, the tangent line is

l(x) = f(x1) + f ′(x1)(x− x1).

Find the intersection with the x-axis:

0 = f(x1) + f ′(x1)(x− x1) =⇒ x = x1 −
f(x1)

f ′(x1)
.

Repeating this, we get the Newton’s Iterative Procedure:

xn+1 = xn − f(xn)

f ′(xn)
.

EXAMPLE 3.6.1

Find the positive root of 3x4 + 15x3 − 125x− 1500 = 0 with error at most 10−5. Use x1 = 4.

Solution. We can check that f(4) < 0 and f(5) > 0, so there is a root between x = 4 and x = 5.

xn+1 = xn − f(xn)

f ′(xn)
= xn − 3x4

n + 15x3
n − 125xn − 1500

12x3
n + 45x2

n − 125
.

x1 = 4,

x2 = 4− 3(4)4 + 15(4)3 − 125(4)− 1500

12(4)3 + 45(4)2 − 125
≈ 4.19956

x3 ≈ 4.187268

x4 ≈ 4.1872187

x5 ≈ 4.1872187

To 5 decimal places, this is 4.18722. Check that f(4.187621) < 0 and f(4.18723) > 0, so IVT says there
is a root between!

Some Problems with Newton’s Method
This method only works on differentiable functions, but more importantly it only works if x1 is chosen “close
enough” to a root! What is “close enough?” It depends! Sometimes any x1 works, sometimes most don’t.

EXAMPLE 3.6.2

Consider f(x) = x3 − 3x+ 1, pick x1 = 1. Then

x2 = x1 −
x3
1 − 3x1 + 1

3x2
1 − 3

= 1− 1− 3 + 1

0
?

Actually, at x = 1, f has a horizontal tangent that never intersects the x-axis, so we can’t find x2. Also,
if we pick x1 = 2, we will find a different root than if we pick x1 = −2. So, pick a good starting point!
A bad choice could make Newton’s method diverge.
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3.10 Derivatives of Inverse Functions
Suppose we want to find the derivative of an inverse function, how could we proceed? Let’s start with the
tangent line to f(x) at x = a and assume f is invertible.

l(x) = f(a) + f ′(a)(x− a).

What would the tangent line to f−1(x) be at x = f(a)? (l)−1(x).
EXERCISE 3.10.1

If Lf
a(x) = f(a) + f ′(a)(x− a), show that

(Lf
a(x))

−1 = a+
1

f ′(a)
(x− f(a)).

So, if f(a) = b, then a = f−1(b), and the tangent line to f−1(x) at x = b is

Lf−1

b (x) = f−1(b) +
1

f ′(a)
(x− b) = f−1(b) +

1

f ′(f−1(b))
(x− b).

But
Lf−1

b (x) = f−1(b) + (f−1)′(b)(x− b) =⇒ (f−1)′ =
1

f ′(f−1(b))
.

This leads us to the following theorem.
THEOREM 3.10.2: Inverse Function Theorem (IFT)

Let I be an interval in R, let f : I → R, and let a be a point in I which is not an endpoint. If f is bijective
and continuous, and f is differentiable at a with f ′(a) ̸= 0, then its inverse f−1 is differentiable at b = f(a)
with

(f−1)′(b) =
1

f ′(a)
=

1

f ′(f−1(b))
.

Moreover, Lf
a is invertible and (Lf

a)
−1 = Lf−1

f(a) = Lf−1

b .

EXAMPLE 3.10.3

Let f(x) = x3 so that f−1(x) = x1/3. Find (f−1)′(3).

Solution 1. Direct computation yields

(f−1)′(x) =
1

x
x−2/3 =⇒ (f−1)′(3) =

1

3
32/3 =

1

3(32/3)
.

Solution 2. Use the IFT:
(f−1)′(3) =

1

f ′(f−1(3))
.

Note that f ′(x) = 3x2 and f−1(3) = 31/3, so

(f−1)′ =
1

f ′(f−3(3))
=

1

3(31/3)2
=

1

3(32/3)
.

This example is somewhat silly since we could compute (f−1)′ directly. An important application of the IFT is
that it allows us to find derivatives of inverse functions if we don’t know them already!
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EXAMPLE 3.10.4

Find (lnx)′.

Solution. Let f(x) = ex, so that f−1(x) = lnx for x > 0. So,

(f−1)′(x) =
1

f ′(f−1(x))
=

1

eln x
=

1

x

Therefore,
(lnx)′ =

1

x
.

REMARK 3.10.5

We can prove IFT by using the chain rule: Suppose f and f−1 are differentiable, we get

f(f−1(x)) = x.

Differentiate both sides with chain rule:

f ′(f−1(x))(f−1)′(x) = 1 =⇒ (f−1)′(x) =
1

f ′(f−1(x))
.

3.11 Derivatives of Inverse Trigonometric Functions
Let’s use the IFT (or just the chain rule) to find (arcsinx)′. We know sin(arcsinx) = x for x ∈ [−1, 1].
Differentiating, we get

(cos(arcsinx))(arcsinx)′ = 1 =⇒ (arcsinx)′ =
1

cos(arcsinx)
.

Can we simplify cos(arcsinx)? Yes! Let θ = arcsinx, then sin θ = x. Visualizing a triangle, we get the
hypotenuse as 1, height as x so that the base

√
1− x2. Hence, cos θ =

√
1− x2. Therefore,

(arcsinx)′ =
1√

1− x2
.

• Q: Wait a minute, how do we know arcsinx is differentiable?
• A: IFT says so! Since sinx is differentiable for x ∈ (−1, 1), arcsinx is too.
EXERCISE 3.11.1

Prove that
• (arccosx)′ =

−1√
1− x2

, and

• (arctanx) =
1

1 + x2
.

EXAMPLE 3.11.2

Find f ′(x), where
1. f(x) = arctan(esin x),
2. f(x) = arcsinx+ arccosx, and
3. f(x) = ln(arctanx).
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Solution.
1. f ′(x) =

1

1 + (esin x)2
(esin x)′

=
1

1 + e2 sin x
esin x(sinx)′

=
esin x cosx

1 + e2 sin x
.

2. f ′(x) = 1√
1−x2

− 1√
1−x2

= 0.
3. f ′(x) = 1

arctan x
1

1+x2 = 1
(arctan x)(1+x2) .

3.12 Implicit Differentiation
So far, we have examined derivatives of explicitly-defined functions (e.g., y = f(x)), but what about implicitly-
defined functions?

EXAMPLE 3.12.1

If x2 + y2 = 1, then this isn’t even a function (as it does not pass the vertical line test). But, if we divide
up the curve into positive and negative parts on the y-axis then it can be a function. Then, we could
find the derivative of each piece! The good news is that it doesn’t matter if we break it up first! We
can differentiate both sides of an implicit equation using the chain rule and solve for y. We do need to
assume that the equation defines an implicit function though, more on this later.

EXAMPLE 3.12.2

Find y′ if 3x3y3 + x2y + 13x = 12.

Solution. We let y = y(x), take the derivative with respect to x on both sides, and then solve for y′(x):
d

dx
[3x3y(x)3 + x2y(x) + 13x] =

d

dx
[12]

d

dx
[3x3y(x)3] +

d

dx
[x2y(x)] +

d

dx
[13x] = 0

3
(
3x2y(x)3 + 3x3(3)y(x)2y′(x)

)
+
(
2xy(x) + x2y′(x)

)
+ 13 = 0

9x2y(x)3 + 9x3y(x)2y′(x) + 2xy(x) + x2y′(x) + 13 = 0

9x3y(x)2y′(x) + x2y′(x) = −13− 9x2y(x)3 − 2xy(x)

y′(x)
(
9x3 + x2

)
= −13− 9x2y(x)3 − 2xy(x)

y′(x) =
−13− 9x2y(x)3 − 2xy(x)

9x3 + x2
.

Therefore,
y′ =

−13− 9x2y3 − 2xy

9x3 + x2
.

REMARK 3.12.3

We can’t always find the derivative of both sides of an equation unless we have a function!
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EXAMPLE 3.12.4

If x2+y2+1, we can show that y′ = −x
y , but for which (x, y) ∈ R2 is this valid for? None! x2+y2+1 ̸= 0

for any (x, y) ∈ R2, so we differentiated nothing! Another example is if 2x = x, we would differentiate
to get 2 = 1 (nonsense). The issue is 2x = x is only true if x = 0, so we can’t compute the derivative as
we can’t take a limit! So be careful, use this power wisely!

Logarithmic Differentiation
We can use implicit differentiation to find the derivative of functions of the form

y = (f(x))g(x), f(x) > 0

by taking the “ln” of both sides.
EXAMPLE 3.12.5

Let y = (lnx)sin x for x > 1. Find y′.

Solution. Let y = y(x) so that y(x) = (lnx)sin x. Taking the logarithm (and then the derivative with
respect to x) on both sides gives

ln y(x) = (sinx) ln(lnx)

d

dx
[ln y(x)] =

d

dx
[(sinx) ln(lnx)]

y′(x)

y(x)
= (cosx) ln(lnx) + sinx

1

lnx

1

x

=⇒ y′(x) = y(x)

[
(cosx) ln(lnx) +

sinx

x lnx

]
=⇒ y′(x) = (lnx)sin x

[
(cosx) ln(lnx) +

sinx

x lnx

]
.

EXAMPLE 3.12.6

Let y = xarctan x. Find y′.

Solution. Let y = y(x) so that y(x) = xarctan x. Taking the logarithm (and then the derivative with
respect to x) on both sides gives

ln y(x) = arctan(x) lnx

d

dx
[ln y(x)] =

d

dx
[arctan(x) lnx]

y′(x)

y(x)
=

1

1 + x2
lnx+ arctan(x)

1

x

=⇒ y′(x) = y(x)

[
lnx

1 + x2
+

arctanx

x

]
=⇒ y′(x) = xarctan x

[
lnx

1 + x2
+

arctanx

x

]
.
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3.13 Local Extrema
DEFINITION 3.13.1: Local Maximum, Local Minimum

Let A ⊆ R be open, let f : A → R, and let a ∈ A. Then f has a local maximum at a if and only if

∀x ∈ A : f(x) ≤ f(a).

Similarly, we say f has a local minimum at a if and only if

∀x ∈ A : f(x) ≥ f(a).

We also present an equivalent definition.
DEFINITION 3.13.2: Local Maximum, Local Minimum

Let A ⊆ R be open, let f : A → R, and let a ∈ A. Then f has a local maximum at a if and only if

∃δ > 0 : ∀x ∈ A : |x− a| ≤ δ =⇒ f(x) ≤ f(a).

Similarly, we say f has a local minimum at a if and only if

∃δ > 0 : ∀x ∈ A : |x− a| ≤ δ =⇒ f(x) ≥ f(a).

REMARK 3.13.3

Local maximum/minimum means max/min nearby a point (i.e., in a small neighbourhood). Global
max/min means max/min over the entire interval in question. So, global max/mins that occur inside
the interval are also local max/mins.

How do we find local extrema? We will use the following theorem.

3.13.1 The Local Extrema Theorem
THEOREM 3.13.4: Fermat’s Theorem/Local Extrema Theorem

Let A ⊆ R be open, let f : A → R, and let a ∈ A. Suppose that f is differentiable at a and that f has a
local maximum or minimum value at a. Then f ′(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local minimum value at
a is similar). Choose δ > 0 so that |x− a| ≤ δ =⇒ f(x) ≤ f(a). For x ∈ A with a < x < a+ δ, since
x > a and f(x) ≥ a we have f(x)−f(a)

x−a ≥ 0, and so

f ′(a) = lim
x→a+

f(x)− f(a)

x− a
≥ 0

by the Comparison Theorem. Similarly, for x ∈ A with a− δ ≤ x < a, since x < a and f(x) ≥ f(a) we
have f(x)−f(a)

x−a ≤ 0, and so
f ′(a) = lim

x→a−

f(x)− f(a)

x− a
≤ 0.

• Q: Is the converse true?
• A: No! f(x) = x3 has a critical point at x = 0, but 0 is neither a local max nor a local min.
• Q: If c is a local max/min, then is f ′(c) = 0?
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• A: No! f(x) = |x| has a local min at x = 0, but f ′(0) does not exist.

Finding Global Extrema
We just saw that if we want to find a local extrema, we should look at points where f ′ = 0 or f ′ does not exist.
Let’s give a name to points like this.

DEFINITION 3.13.5: Critical Point

A point c in the domain of a function f is called a critical point for f if either f ′(c) = 0 or f ′(c) does
not exist.

Now, the EVT guarantees a continuous function has a global max/min on a closed interval. Either these are at
the endpoints or they are inside, and therefore local max/mins, and hence critical points!
So here is the algorithm for finding the global max/min of a continuous function f(x) on [a, b].
(i) Find all critical points of f in [a, b].
(ii) Evaluate f(a), f(b), and f(c), where c are all the critical points.
(iii) The largest value tells you where the global maximum is, and the smallest tells you what the global

minimum is.
EXAMPLE 3.13.6

Find the global maximum and minimum for f(x) = x3 − 3x+ 2 on [−3, 3].

Solution. f ′(x) = 3x2 − 3 = 3(x− 1)(x+ 1) = 0 if x = ±1. These critical points are both inside [−3, 3].
Now, we check f(−3) = −16, f(−1) = 4, f(1) = 0, f(3) = 20. Therefore, the global maximum is at
(3, 20) and the global minimum is at (−3,−16).

EXAMPLE 3.13.7

Find the global maximum and minimum for f(x) = 1/x on [3, 7].

Solution. f ′(x) = −1/x2 and f ′(x) does not exist if x = 0. However, 0 is not a critical point of f since
0 /∈ [3, 7]. So, f has no critical points. Now, f(3) = 1/3 and f(7) = 1/7, so the global maximum is at
(3, 1/3) and the global minimum is at (7, 1/7).

REMARK 3.13.8

If we considered f(x) = 1/x on its entire domain {x ∈ R : x ̸= 0}, then x = 0 is still not a critical
point as it’s not in the domain of the function.

We will re-visit this when we discuss curve sketching.
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The Mean Value Theorem

As we will see, the Mean Value Theorem (MVT) has lots of applications! But first we should prove it! Let’s
start with:

THEOREM 4.0.1: Rolle’s Theorem

Let f be a real function which is continuous on a closed interval [a, b] and differentiable on the open interval
(a, b).Then:

∃c ∈ (a, b) : f ′(c) = 0.

Proof: We consider 3 cases:
• Case 1: f(x) = 0 for all x ∈ [a, b]. Then f ′(x) = 0 for all x ∈ (a, b), so there are lots of choices for

c ∈ (a, b) where f ′(c) = 0.
• Case 2: There exists a point x0 ∈ (a, b) such that f(x0) > 0. By EVT, f attains its global max

on [a, b] and since f(x0) > 0, while f(a) = f(b) = 0, we can see that the global max will occur
at c ∈ (a, b). This means c is a critical point of f , and since f ′(c) exists, it must be the case that
f ′(c) = 0.

• Case 3: There exists a point x0 ∈ (a, b) such that f(x0) < 0. The proof is left as an exercise (similar
to case 2, but use minimum).

4.1 The Mean Value Theorem
THEOREM 4.1.1: The Mean Value Theorem (MVT)

Let f be a real function which is continuous on a closed interval [a, b] and differentiable on the open interval
(a, b).Then:

∃c ∈ (a, b) : f ′(c) =
f(b)− f(a)

b− a
.

Proof: Define
h(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Since f is continuous on [a, b], so is h. Also,

h′(x) = f ′(x)− f(b)− f(a)

b− a
,

52
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so h′(x) exists for x ∈ (a, b). Lastly, h(a) = h(b) = 0. Rolle’s theorem says there exists c ∈ (a, b) such
that h′(c) = 0. So,

0 = f ′(c)− f(b)− f(a)

b− a
=⇒ f ′(c) =

f(b)− f(a)

b− a
.

EXAMPLE 4.1.2

Let f(x) = x2 + 2x+ 1 and x ∈ [1, 2]. Find the c’s that satisfy the MVT.

Solution. Note that
f(2)− f(1)

2− 1
=

(4 + 4 + 1)− (1 + 2 + 1)

1
= 5.

Need f ′(c) = 5 =⇒ f ′(c) = 2c+ 2 =⇒ 2c+ 2 = 5 =⇒ c = 3/2.

REMARK 4.1.3

Why do we need continuity at the endpoints? Consider f(x) = x where f(a) = f(b) = 0, but f ′(x) ̸= 0
for any x ∈ (a, b).

EXAMPLE 4.1.4

Can MVT be applied to f(x)?
(1) f(x) = |x| where x ∈ [−1, 1]. No! f ′(x) DNE at x = 0.
(2) f(x) = x+1

x+3 where x ∈ [−4, 0]. No! f(x) is not continuous at x = −3.
(3) f(x) = e−x where x ∈ [−1, 1]. Yes!
(4) f(x) = secx where x ∈ [0, π]. No! secx is not continuous at x = π/2.

4.2 Applications of the Mean Value Theorem
We will see that the MVT has LOTS of applications!

4.2.1 Antiderivatives
DEFINITION 4.2.1: Antiderivative (Primitive) of Real Function

Let F be a real function which is continuous on [a, b] and differentiable on (a, b).
Let f be a real function which is continuous on (a, b).

Let
∀x ∈ (a, b) : F ′(x) = f(x),

where F ′ denotes the derivative of F with respect to x.

Then F is a antiderivative of f , and is denoted:

F =

∫
f(x) dx.

We call ∫ f(x) dx the indefinite integral of f , where f(x) is the integrand.
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EXAMPLE 4.2.2

F (x) = x2

2 is an antiderivative of f(x) = x since F ′(x) = x.

• Q: Are antiderivatives unique?
• A: No! x2

2 , x2

2 + 7, x2

2 − e are all antiderivatives of f(x) = x.
• Q: Do different antiderivatives differ by a constant?
• A: Yes! Let’s work towards showing this.
THEOREM 4.2.3: Zero Derivative implies Constant Function

Let f be a real function which is continuous on [a, b] and differentiable on (a, b).
Suppose that:

∀x ∈ (a, b) : f ′(x) = 0.

Then f is constant on [a, b].

Proof: By MVT,
∃c ∈ (a, x) : f ′(c) =

f(x)− f(a)

x− a
.

But by our supposition:
∀x ∈ (a, b) : f ′(x) = 0

which means:
∀x ∈ (a, b) : f(x)− f(a) = 0

and hence:
∀x ∈ (a, b) : f(x) = f(a).

This tells us that the family of antiderivatives for the function f(x) = 0 is all the constant functions f(x) = c ∈
R.

THEOREM 4.2.4: Antiderivative Theorem

If f ′(x) = g′(x) for all x ∈ I, then there exists α ∈ R such that f(x) = g(x) + α for all x ∈ I.

Proof: Suppose f ′(x) = g′(x) for all x ∈ I. Define h(x) = f(x)− g(x). Then h′(x) = f ′(x)− g′(x) = 0
for all x ∈ I. By Theorem 4.2.3, there exists α ∈ R such that h(x) = α for all x ∈ I. Therefore,
f(x)− g(x) = α =⇒ f(x) = g(x) + α for all x ∈ I.

Additional Notes on Antiderivatives

EXAMPLE 4.2.5∫
x dx = x2/2 + C, ∫ x2 dx = x3/3 + C.

THEOREM 4.2.6: Integral of Power

∀n ∈ R ̸=−1 :

∫
xn dx =

xn+1

n+ 1
+ C.

Proof: Easy exercise (just differentiate the RHS).



CHAPTER 4. THE MEAN VALUE THEOREM 55

Also, if F is an antiderivative of f and G is an antiderivative of g, then αF +βG is an antiderivative of αf +βg
since

d

dx

(
αF (x) + βG(x)

)
= αf(x) + βg(x).

More generally, ∫
α1f1(x) + · · ·+ αnfn(x) dx = α1

∫
f1(x) dx+ · · ·+ αn

∫
fn(x) dx.

Some Basic Indefinite Integrals

• ∫
1
x dx = ln|x|+ C.

• ∫
ex dx = ex + C.

• ∫
sinxdx = − cos(x) + C.

• ∫
cosxdx = sin(x) + C.

• ∫
sec2 xdx = tanx+ C.

• ∫
1

1+x2 dx = arctan(x) + C.
• ∫

1√
1−x2

dx = arcsin(x) + C.

• ∫ −1√
1−x2

dx = arccos(x) + C.

4.2.2 Increasing Function Theorem
The sign of f ′(x) gives us more info about f(x)!

THEOREM 4.2.7: Derivative of Monotone Function

Let f be a real function which is continuous on [a, b] and differentiable on (a, b).

∀x ∈ (a, b) : f ′(x) > 0 =⇒ f is strictly increasing on [a, b].

∀x ∈ (a, b) : f ′(x) ≥ 0 =⇒ f is non-decreasing on [a, b].

∀x ∈ (a, b) : f ′(x) < 0 =⇒ f is strictly decreasing on [a, b].

∀x ∈ (a, b) : f ′(x) ≤ 0 =⇒ f is non-increasing on [a, b].

Proof: We prove the first one, noting that the rest are similar. Let c, d ∈ [a, b] with c < d. Then f satisfies
the conditions of the MVT on [c, d]. Hence:

∃ξ ∈ (c, d) : f ′(ξ) =
f(d)− f(c)

d− c

Let f be such that
∀x ∈ (a, b) : f ′(x) > 0.

Then:
f ′(ξ) > 0

and hence:
f(d) > f(c)

Thus f is strictly increasing [a, b].

We will use this theorem when we look at curve sketching.
• Q: Is the converse true?



CHAPTER 4. THE MEAN VALUE THEOREM 56

• A: Not always: f(x) = x3 is increasing everywhere, but f ′(0) = 0. Also, f ′ may not exist! So all we can
guarantee is that f ′(x) ≥ 0 (when it exists).

4.2.3 Functions with Bounded Derivatives
What can we say about a function f if all we know are the bounds on its derivative?
Say m ≤ f ′(x) ≤ M for x ∈ (a, b) and say f is continuous on [a, b], so we can apply MVT. Pick x ∈ [a, b]. Then
apply MVT to f on [a, x]: ∃c ∈ (a, x) such that

f ′(c) =
f(x)− f(a)

x− a
,

but f ′(c) ∈ [m,M ], so

m ≤ f(x)− f(a)

x− a
≤ M

⇝ m(x− a) ≤ f(x)− f(a) ≤ M(x− a)

⇝ f(a) +m(x− a) ≤ f(x) ≤ f(a) +M(x− a).

So the graph of f lies between the lines f(a) +m(x− a) and f(a) +M(x− a). This leads us to the following
theorem.

THEOREM 4.2.8: Bounded Derivative Theorem (BDT)

Let f be a real function which is continuous on [a, b] and differentiable on (a, b).
Suppose ∀x ∈ (a, b) : m ≤ f ′(x) ≤ M . Then:

∀x ∈ [a, b] : f(a) +m(x− a) ≤ f(x) ≤ f(a) +M(x− a).

EXAMPLE 4.2.9

Prove
√
66 ∈ (8 + 1/9, 8 + 1/8).

Solution. Let f(x) = √
x so f ′(x) = 1

2
√
x
. Note that f is continuous on [64, 66] and differentiable on

(64, 66). Also, if x ∈ [64, 66], it is clear that 64 ≤ x ≤ 81, so

f ′(x) =
1

2
√
x
∈
[
1

18
,
1

16

]
.

By the BDT, we get:
√
64 +

1

18
(x− 64) ≤

√
x ≤

√
64 +

1

16
(x− 64).

So, at x = 66:
√
64 +

1

18
(2) ≤

√
66 ≤

√
64 +

1

16
(2)⇝ 8 +

1

9
≤

√
66 ≤ 8 +

1

8
.

EXAMPLE 4.2.10

If f(12) = 2 and 1 ≤ f ′(x) ≤ 3 for all x ∈ R, find an interval for f(20).

Solution. BDT says f(12) + 1(x− 12) ≤ f(x) ≤ f(12) + 3(x− 12). So, at x = 20:

2 + 8 ≤ f(20) ≤ 2 + 24⇝ 10 ≤ f(20) ≤ 26.
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4.2.4 Comparing Functions Using Their Derivatives
If we know the relative sizes of two functions’ derivatives, we can also compare the sizes of the functions!

THEOREM 4.2.11

Assume f, g are continuous at x = a with f(a) = g(a).
(1) If both f, g are differentiable for x > a, and if f ′(x) ≤ g′(x), then

∀x > a : f(x) ≤ g(x).

(2) If both f, g are differentiable for x < a and if f ′(x) ≤ g′(x), then

∀x < a : f(x) ≥ g(x).

Proof of (1): Suppose f, g are continuous at x = a and differentiable for x > a, and f ′(x) ≤ g′(x) for
all x > a.
Define h(x) = g(x)− f(x), then h is also continuous at x = a and differentiable for x > a. Also,

∀x > a : h′(x) = g′(x)− f ′(x) ≥ 0.

So, by MVT, we can find c ∈ (a, x) such that

0 ≤ h′(c) =
h(x)− h(a)

x− a
.

But h(a) = 0 and x− a > 0, so h(x) ≥ 0 too; that is,

h(x) = g(x)− f(x) ≥ 0⇝ g(x) ≥ f(x)

for all x > a.

REMARK 4.2.12

Note that if f ′(x) < g′(x), then we get f(x) < g(x) for x > a.

EXAMPLE 4.2.13

Prove that ∀x ∈ R>0 : x− 1
2x

2 < ln(1 + x) < x.

Proof: Let f(x) = x− 1
2x

2, g(x) = ln(1 + x), and h(x) = x. Then f(0) = g(0) = h(0) = 0 and

f ′(x) = 1− x, g′(x) =
1

1 + x
, h′(x) = 1.

If x > 0, then g′(x) = 1
1+x < 1 = h′(x).

Also, if x > 0, then
1− x2 < 1

⇝ (1 + x)(1− x) < 1

⇝ 1− x <
1

1 + x

⇝ f ′(x) < g′(x).

Therefore, for x > 0, f ′(x) < g′(x) < h′(x). Apply the theorem twice (with strict inequalities) to get

∀x ∈ R>0 : x− 1

2
x2 < ln(1 + x) < x.
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EXERCISE 4.2.14

By comparing derivatives and Squeeze Theorem, prove that

lim
n→∞

(
1 +

1

n

)n

= e.

4.3 L’Hôpital’s Rule
First, we worked with limits. Then, we used limits to define derivatives. Now, we come full-circle and show
how derivatives can be used to help solve limits!
Recall: the first thing we do when solving limits is to check where each of the component functions go. If we
get a number, ±∞, or DNE, we are done! (May also need the Squeeze Theorem).
But, if we get an indeterminate form:

0

0
,±∞

∞
, 0 · ∞,∞−∞, 1∞,∞0, 00,

we need to do more work. Let’s see how L’Hôpital’s Rule can help us in each case!
THEOREM 4.3.1: L’Hôpital’s Rule (LHR)

Let f and g be real functions which are differentiable on an open interval I, and let a ∈ R.
Let:

∀x ∈ I : g′(x) ̸= 0.

Let:
lim
x→a

f(x)

g(x)
be of type 0

0
or ±∞

∞
.

Let:
lim
x→a

f(x)

g(x)
= L ∈ R.

Then:
lim
x→a

f ′(x)

g′(x)
= L.

REMARK 4.3.2

(a) The rule applies to a ∈ R, i.e., a ∈ R and a = ±∞, and one-sided limits.
(b) You can apply the rule multiple times, but make sure after each application that you verify your

limit is of type 0/0 or ±∞/∞.
(c) We will use L’R

= to denote a step which we apply l’Hôpital’s Rule.

Let’s examine the various types!

Type 0/0 or ±∞/∞
Apply LHR directly!
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EXAMPLE 4.3.3

• lim
x→2

2− x√
2−

√
x

type 0

0

L’R
= lim

x→2

−1

− 1
2
√
x

= lim
x→2

2
√
x

= 2
√
2.

• lim
x→∞

x3 − 2x+ 7

3x3 + x2 + x+ 1
type ∞

∞
L’R
= lim

x→∞

3x2 − 2

9x2 + 2x+ 1
type ∞

∞
L’R
= lim

x→∞

6x

18x+ 2
type ∞

∞

= lim
x→∞

6

18

=
1

3
.

• lim
x→0

tanx

x
type 0

0

L’R
= lim

x→0

sec2 x

1

= 1.

• lim
x→0+

lnx

x
= −∞ is not an indeterminate form, so we can’t use LHR. Simply,

lim
x→0+

lnx

x
=

(
lim

x→0+

1

x

)
( lim
x→0+

lnx) = (∞)(−∞) = −∞.

Type 0 · ∞
The trick: divide by the reciprocal of one of them!

fg =
f

1/g
.

EXAMPLE 4.3.4

• lim
x→0+

x lnx type 0 · −∞

= lim
x→0+

lnx

1/x
type − ∞

∞
L’R
= lim

x→0+

1/x

−1/x2

= lim
x→0+

(−x)

= 0.
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• lim
x→0+

xe1/x type 0 · ∞

= lim
x→0+

e1/x

1/x
type ∞

∞
L’R
= lim

x→0+

e1/x(−1/x2)

−1/x2

= lim
x→0+

e1/x

= ∞.

• lim
x→∞

xe−x type ∞ · 0

= lim
x→∞

x

ex
type ∞

∞
L’R
= lim

x→∞

1

ex

= 0.
Alternative argument: x grows asymptotically slower than ex as x → ∞.

Type ∞−∞
Combine the terms into a single term somehow (rationalize, factor, simplify, etc.).

EXAMPLE 4.3.5

• lim
x→π/2−

sec(x)− tan(x) type ∞−∞

= lim
x→π/2−

1

cosx
− sinx

cosx

= lim
x→π/2−

1− sinx

cosx
type 0

0

L’R
= lim

x→π/2−

− cosx

− sinx

=
0

1
= 0.

• lim
x→∞

ln(x)− ln(3x+ 1) type ∞−∞

= lim
x→∞

ln(
x

3x+ 1
)

= ln

(
lim
x→∞

x

3x+ 1

)
since lnx is continuous at x =

1

3
; type ∞

∞
L’R
= ln

(
lim
x→∞

1

3

)
= ln

(
1

3

)
.

Type 1∞, 00, ∞0

In this case, write
f(x)g(x) = eln(f(x)

g(x)) = eg(x)ln(f(x)) = exp
{
g(x)ln

(
f(x)

)}
,

then the exponent will be type 0 ·∞. You can pass the limit through exp{ · } since ex is continuous on R.
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EXAMPLE 4.3.6

• lim
x→0+

xx type 00

= lim
x→0+

ex ln x

= exp

{
lim

x→0+
x lnx

}
we did this earlier; type 0 · ∞

= e0

= 1.

• lim
x→∞

(
1 +

1

x

)x

type 1∞

= lim
x→∞

exln(1+
1
x ) type ∞ · 0

= exp

{
lim
x→∞

xln

(
1 +

1

x

)}
= exp

{
lim
x→∞

ln
(
1 + 1

x

)
1/x

}
type 0

0

L’R
= exp

{
lim
x→∞

1 + 1
x · −1

x2

−1/x2

}
= exp

{
lim
x→∞

1

1 + 1/x

}
= e1

= e.

• lim
x→π/2−

sec(x)cos(x) type ∞0

= lim
x→π/2−

ecos(x) ln(sec x)

= exp

{
lim

x→π/2−
cos(x) ln(secx)

}
type 0 · ∞

= exp

{
lim

x→π/2−

ln(secx)

secx

}
type ∞

∞
L’R
= exp

{
lim

x→π/2−

1
sec x sec(x) tan(x)

sec(x) tan(x)

}
= exp

{
lim

x→π/2−

1

secx

}
= e0

= 1.

So, in total there are 7 indeterminate forms.

indeterminate form method
0/0,∞/∞ apply LHR directly
0 · ∞ fg = f

1/g

∞−∞ combine terms (rationalize, factor, simplify, etc.)
1∞, 00,∞0 fg = exp{g ln(f)}.
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4.3.1 Interpreting the Second Derivative & Formal Definition of Concavity
While the first derivative told us if our function was increasing or decreasing, the second derivative tells us
about concavity!

DEFINITION 4.3.7

The graph of f is concave upwards on an interval I if, for every pair of points a, b ∈ I, the secant line
joining (a, f(a)) to (b, f(b)) lies above the graph of f(x).
The graph is concave downwards on I if the secant line lies below the graph of f .

We can see if the graph is concave up, then the slope of the tangent line is increasing, that is, f ′ is increasing.
Similarly, if the graph of f is concave down, then f ′ is decreasing. So we get:

THEOREM 4.3.8

(1) If f ′′(x) > 0 for all x ∈ I, then the graph of f is concave up on I.
(2) If f ′′(x) < 0 for all x ∈ I, then the graph of f is concave down on I.

We also have a name for a point where concavity changes:
DEFINITION 4.3.9

A point c is called an inflection point for f if f is continuous at x = c and the concavity of f changes at
x = c.

If f ′′(x) is also continuous at x = c, then the sign of f ′′ must change at x = c, so by the IVT, we get:
THEOREM 4.3.10

If f ′′(x) is continuous at x = c and (c, f(c)) is an inflection point for f , then f ′′(c) = 0.

REMARK 4.3.11

Note that this is only telling us how to find candidates for inflection points. The converse is false! If
f ′′(c) = 0, then that does not mean that (c, f(c)) is an inflection point.

EXERCISE 4.3.12

Find a counterexample!

EXAMPLE 4.3.13

Find intervals of concavity and inflection points for f(x) = x4 − 6x2.

Solution. f ′(x) = 4x3 − 12x and f ′′(x) = 12x2 − 12. Setting f ′′(x) = 0 yields x = ±1, let’s check:

(−∞,−1] (−1, 1) [1,∞)
f ′′ + − +
f up down up

Therefore, f is concave up on (−∞,−1] and [1,∞) and concave down on [−1, 1]. Since f ′′ changes at
x = ±1 and f is continuous at x = ±1, these are both inflection points.
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EXAMPLE 4.3.14

Find intervals of concavity and inflection points for f(x) = 1
x .

Solution. f ′(x) = −1/x2, f ′′(x) = 2/x3. Note that f ′′ is undefined at x = 0.

(−∞, 0) (0,∞)
f ′′ − +
f down up

Therefore, f is concave up on (0,∞) and concave down on (−∞, 0). However, x = 0 is not an inflection
point since f is continuous at x = 0.

4.3.2 Classifying Critical Points: The First and Second Derivative Tests
We know that if c is a local max/min for f , then either f ′(c) = 0 or f ′(c) is undefined, that is, c is a critical
point. But not all critical points are local max/mins! So, let’s examine two methods for classifying critical
points.

Method 1: The First Derivative Test

• Idea: look at the sign of f ′ on either side of c.
• Say f ′(x) < 0 for x ∈ (a, c) and f ′(x) > 0 for x ∈ (c, b) (a < c < b).
• Then, f is decreasing on (a, c) and increasing on (c, b). This suggests f has a local minimum! Similarly,

for local maximums.
Let’s collect these results into a theorem!

THEOREM 4.3.15: First Derivative Test

Assume c is a critical point for f and f is continuous at x = c. Let c ∈ (a, b).
(1)

(
∀x ∈ (a, c) : f ′(x) > 0

)
∧
(
∀x ∈ (c, b) : f ′(x) < 0

)
=⇒ f has a local maximum at x = c.

(2)
(
∀x ∈ (a, c) : f ′(x) < 0

)
∧
(
∀x ∈ (c, b) : f ′(x) > 0

)
=⇒ f has a local minimum at x = c.

These are easier to see if you make a table.

(a, c) (c, b)
f ′ + −
f ↗ ↘

LMAX

(a, c) (c, b)
f ′ − +
f ↘ ↗

LMIN

EXAMPLE 4.3.16

Find the local max/mins of f(x) = x3

3 − 3x2

2 + 2x+ 1.

Solution. f ′(x) = x2 − 3x+ 2 = (x− 2)(x− 1). Hence, f ′(x) = 0 when x = 1 and/or x = 2; these are
both critical points.

(−∞, 1) (1, 2) (2,∞)
f ′ + − +
f ↗ ↘ ↗

So, f has a local max at x = 1 and a local min at x = 2 by the first derivative test.
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Method 2: The Second Derivative Test

Suppose f ′(c) = 0, so c is a critical point of f . Then, the tangent line to the graph of f at x = c is horizontal.
Suppose also that f ′′(c) < 0. Then, the tangent line sits above the graph since the graph is concave down! So,
x = c is a local max! This is the second derivative test! We get a similar result for f ′′(c) > 0.

THEOREM 4.3.17: Second Derivative Test

Let f ′(c) = 0, and let f ′′ be continuous at x = c.
(1) f ′′(c) < 0 =⇒ f has a local maximum at x = c.
(2) f ′′(c) > 0 =⇒ f has a local minimum at x = c.
(3) f ′′(c) = 0 =⇒ no information.

EXAMPLE 4.3.18

f(x) = x3

3 + 3x2 − 7x+ 3.

Solution. f ′(x) = x2 + 6x− 7 = (x− 1)(x+ 7). Hence, f ′(x) = 0 when x = −7 and/or x = 1. Note
that f ′′(x) = 2x+ 6 is continuous on R.

• f ′′(−7) = −8 < 0 =⇒ x = −7 is a local maximum.
• f ′′(1) = 8 > 0 =⇒ x = 1 is a local minimum.

REMARK 4.3.19

You can use either the first or second derivative test to classify critical points, whichever you prefer!

4.4 Curve Sketching
To sketch f(x):
(1) Find the domain of f .
(2) Find all the intercepts (x-int (y = 0) and y-int (x = 0)).
(3) (a) Find all vertical asymptotes (÷0, ln)

(b) Find all horizontal asymptotes ( lim
x→±∞

f(x)).

(4) Find f ′(x) and any critical points ((x, y) coordinates).
(5) Find f ′′(x) and solve f ′′(x) = 0, find any points where f ′′(x) does not exist ((x, y) coordinates).
(6) Test all intervals for increasing/decreasing, concavity, inflection points, local extrema.
(7) Plot the interest points and asymptotes on a graph.
(8) Connect the dots using the following:

f ′′ > 0 f ′′ < 0

f ′ > 0

f ′ < 0

EXAMPLE 4.4.1

Sketch f(x) = x4 − 16x2 with calculus.
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Solution.
(1) Domain: R.
(2) • x-int (y = 0): 0 = x4−16x2 = x2(x−4)(x+4) =⇒ x = 0,±4. Points: (0, 0), (4, 0), (−4, 0).

• y-int (x = 0): (0, 0).
(3) No VA’s, no HA’s.
(4) f ′(x) = 4x3 − 32x = 4x(x−

√
8)(x+

√
8) = 0 if x = 0,±

√
8 (all critical points).

(5) f ′′(x) = 12x2 − 32 = 4(3x2 − 8) = 0 if x = ±
√

8
3 . Points: (±

√
8
3 ,−

320
9 ).

(6) The test:

(−∞,−
√
8) (−

√
8,−

√
8
3 ) (−

√
8
3 , 0) (0,

√
8
3 ) (

√
8
3 ,
√
8) (

√
8,∞)

f ′′ + − +

f ′ − + − +

f ↘ ↗ ↗ ↘ ↘ ↗

Shape

It is clear that the local minima are at x = ±
√
8 and the local maximum is at x = 0.

-4 -2 2 4

x

100

200

300

400

y

increasing

decreasing

● critical point

-6 -4 -2 2 4 6

x

500

1000

1500

y

concave up

concave down

● inflection point

Hence, f is:
• Increasing on (−

√
8, 0) and (

√
8,∞);

• Decreasing on (−∞,−
√
8) and (0,

√
8);

• Concave up on (−∞,−
√

8
3 ) and (

√
8
3 ,∞);

• Concave down on (−
√

8
3 ,
√

8
3 ).

EXAMPLE 4.4.2

Sketch f(x) = e−x2 with calculus.

Solution.
(1) Domain: R.
(2) y-int (x = 0): y = 1; no x-int.
(3) No VA’s.

lim
x→±∞

e−x2

= 0,

so HA at y = 0 for x → ±∞.
(4) f ′(x) = e−x2

(−2x) = 0 if x = 0. Point is (0, 1).
(5) f ′′(x) = −2e−x2

+ e−x2

(4x2) = e−x2

(4x2 − 2) = 0 if x = ± 1√
2
. Points: (± 1√

2
, 1√

e
).
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(6) The test:
(−∞,− 1√

2
) (− 1√

2
, 0) (0, 1√

2
) ( 1√

2
,∞)

f ′′ + − +

f ′ + −
f ↗ ↗ ↘ ↗

Shape

It is clear that the local maximum is at x = 0.

-2 -1 1 2

x

0.2

0.4

0.6

0.8

1.0

y

increasing

decreasing

● critical point

-1.5 -1.0 -0.5 0.5 1.0 1.5

x

0.2

0.4

0.6

0.8

1.0

y

concave up

concave down

● inflection point

Hence, f is:
• Increasing on (−∞, 0);
• Decreasing on (0,∞);
• Concave up on (−∞,− 1√

2
) and ( 1√

2
,∞);

• Concave down on (− 1√
2
, 1√

2
).

EXAMPLE 4.4.3

Sketch f(x) =
x2

x2 − 4
with calculus. Note that

f ′(x) = − 8x

(x2 − 4)2
, f ′′(x) =

8(3x2 + 4)

(x2 − 4)3
.

Solution.
(1) Domain: x ̸= ±2.
(2) x and y-int (x = 0, y = 0): (0, 0)
(3) VA at x = ±2.

lim
x→±∞

f(x) = 1,

so HA at y = 1 for x → ±∞.
(4) f ′(x) = 0 when x = 0. f ′(x) DNE if x = ±2, but x = ±2 is not in the domain of the function.

Therefore, the only critical point is x = 0.
(5) f ′′(x) = 0 never. f ′′(x) DNE when x = ±2.
(6) The test:

(−∞,−2) (−2, 0) (0, 2) (2,∞)

f ′′ + − +

f ′ + + − −
f ↗ ↗ ↘ ↘

Shape
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It is clear that the local maximum is at x = 0.

-2 -1 1 2

x

-5

5

10

y

increasing

decreasing

● critical point

Hence, f is:
• Increasing on (−∞,−2) and (−2, 0);
• Decreasing on (0, 2) and (2,∞);
• Concave up on (−∞,−2) and (2,∞);
• Concave down on (−2, 2).



Chapter 5

Taylor Polynomials and Taylor’s
Theorem

5.1 Introduction to Taylor Polynomials and Approximation
Recall the linear approximation of f(x) at x = a:

Lf
a(x) = f(a) + f ′(a)(x− a).

Idea: use higher-order derivatives to get a better approximation! Let’s find a polynomial Tn,a(x) that agrees
with f(x), f ′(x), f ′′(x), . . . , f (n)(x) at x = a, say

Tn,a(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n.

First, Tn,a(a) = c0, and we want Tn,a(a) = f(a), so

c0 = f(a).

Next, T ′
n,a(x) = c1 + 2c2(x − a) + · · · + ncn(x − a)n−1, and T ′

n,a(a) = c1. But, we want T ′
n,a(a) = f ′(a),

so
c1 = f ′(a).

T ′′
n,a(x) = 2c2 + 6c3(x− a) + · · ·+ n(n− 1)cn(x− a)n−2,

so T ′′
n,a(a) = 2c2. But we want T ′′

n,a(a) = f ′′(a), so

2c2 = f ′′(a) =⇒ c2 =
f ′′(a)

2
.

Keep going!
c3 =

f (3)(a)

6
=

f (3)(a)

3!
.

In general,
ck =

f (k)(a)

k!
, 0 < k ∈ Z.

68
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DEFINITION 5.1.1

Assume that f is n-times differentiable at x = a. The nth degree Taylor polynomial for f centred at
x = a is:

Tn,a(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n =

n∑
k=0

f (k)(a)

k!
(x− a)k.

EXAMPLE 5.1.2

Find T4,0(x) for f(x) = ex.

Solution:

f(x) = ex =⇒ f(0) = 1,

f ′(x) = ex =⇒ f ′(0) = 1,

f ′′(x) = ex =⇒ f ′′(0) = 1,

f (3)(x) = ex =⇒ f (3)(0) = 1,

f (4)(x) = ex =⇒ f (4)(0) = 1.

So,
T4,0(x) = 1 + x+

x2

2!
+

x3

3!
+

x4

4!
.

In general, the Taylor series expansion at x = 0 is:

ex =

∞∑
n=0

xn

n!
.

It is clear that the larger n is, the better Tn,a(x) approximates f(x).
EXAMPLE 5.1.3

Consider f(x) = cosx (so f(0) = 1), we get
f ′(x) = − sinx =⇒ f ′(0) = 0,

f ′′(x) = − cosx =⇒ f ′′(0) = −1,

f (3)(x) = sinx =⇒ f (3)(0) = 0,

f (4)(x) = cosx =⇒ f (4)(0) = 1.

So, we get T0,0(x) = T1,0(x) = 1 and

T3,0(x) = 1− x2

2!
, T4,0(x) = 1− x2

2!
+

x4

4!
.

REMARK 5.1.4

Since odd derivatives at x = 0, only the next even Taylor polynomial changes. This also has to do
with the fact that cosx is an even function.

In general, the Taylor series expansion at x = 0 is:

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
.



CHAPTER 5. TAYLOR POLYNOMIALS AND TAYLOR’S THEOREM 70

EXAMPLE 5.1.5

For f(x) = lnx, find T3,1(x).

Solution.

f(x) = lnx =⇒ f(1) = 0,

f ′(x) =
1

x
=⇒ f ′(1) = 1,

f ′′(x) = − 1

x2
=⇒ f ′′(1) = −1,

f (3)(x) =
2

x3
=⇒ f (3)(1) = 2.

So,
T3,1(x) = 0 + 1(x− 1)− 1

2!
(x− 1)2 +

2

3!
(x− 1)3 = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3.

5.2 Taylor’s Theorem and Errors in Approximations
As for linear approximations, we need a formula that allows us to estimate the size of the error in using the
Taylor polynomial to approximate a function.

DEFINITION 5.2.1

Assume that f is n-times differentiable at x = a. Let

Rn,a(x) = f(x)− Tn,a(x).

Rn,a(x) is called the nth degree Taylor remainder function for f(x) centred at x = a.
Then, we define the error in using the Taylor polynomial to approximate f as

ϵ(x) = |Rn,a(x)|.

Now, we can write a formula for the remainder.
THEOREM 5.2.2: Taylor’s Theorem

Assume f is (n+ 1)-times differentiable on an interval I containing x = a. Let x ∈ I. Then, there exists a
point c between a and x such that

f(x)− Tn,a(x) = Rn,a(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

REMARK 5.2.3: Observations of Taylor’s Functions

(1) T1,a(x) = Lf
a(x) and

|Rn,a(x)| =
∣∣∣∣f ′′(c)

2!

∣∣∣∣(x− a)2 ≤ M

2
(x− a)2,

which is the linear approximation error!
(2) If n = 0, f is differentiable on I, and for x ∈ I, there exists a point c between a and x such that

f(x)− T0,a(x) = f(a),
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so it says
f(x)− f(a) = f ′(c)(x− a) =⇒ f(x)− f(a)

x− a
= f ′(c),

which is the MVT! So, Taylor’s Theorem is a higher-order version of the MVT.
(3) Again, the theorem doesn’t tell us how to find c, but we can find an upper bound on the error, like

we did for linear approximations.

THEOREM 5.2.4: Taylor’s Inequality

|Rn,a(x)| ≤
M |x− a|n+1

(n+ 1)!
,

where |f (n+1)(c)| ≤ M for all c between a and x.

EXAMPLE 5.2.5

Let f(x) = √
1 + x.

(1) Show that T2,0(x) = 1 + x
2 − x2

8 .
(2) Approximate

√
1.1 using T2,0(x).

(3) Find an upper bound on the error.

Solution.
(1) Exercise.
(2)

√
1.1 = f(0, 1) ≈ T2,0(0, 1) = 1 + 0.1

2 − 0.01
8 = 1 + 1

20 − 1
800 = 839

800 .
(3) Note that f ′′(x) = 3

8(1+x)5/2
is decreasing on [0, 0.1], so

|f ′′(x)| ≤ 3

8
for x ∈ [0, 0.1] using c = 0,

so M = 3/8 works. Therefore,
ϵ(x) ≤ (3/8)|x|3

3!
or

ϵ(0.1) ≤ 3

8

0.13

3!
=

1

16

1

1000
=

1

16000
.

Additional questions:
• Is T2,0(x) an over or underestimate for f(x) if x ≥ 0?
• We know

f(x)− T2,0(x) =
f (3)(c)

3!
x3 =

3

8(1 + c)5/3
x3

3!
≥ 0

for x ≥ 0 =⇒ c ≥ 0. So, f(x) ≥ T2,0(x), which means T2,0(x) underestimates f(x) for x ≥ 0.
So, the estimate is a lower bound on the actual value! Therefore,

√
1.1 ∈

[
839

800
,
839

800
+

1

16000

]
.

EXAMPLE 5.2.6

Let f(x) = x2/3. Find the second-order Taylor polynomial centred at x = 8 and find an upper bound on
the error if x ∈ [5, 11].
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Solution. Second-order means two derivatives plus one for the error.

f(x) = x2/3 =⇒ f(8) = 4,

f ′(x) =
2

3
x−1/3 =⇒ f ′(8) =

1

3
,

f ′′(x) = −2

9
x−4/3 =⇒ f ′′(8) = − 1

72
,

f (3)(x) =
8

27
x−7/3.

So,
T2,8(x) = 4 +

1

3
(x− 8)− 1

144
(x− 8)2.

For the error,
ϵ(x) ≤ M |x− 8|3

3!
,

where |f (3)(c)| ≤ M for c ∈ [5, 11] (same range as x). Note that∣∣∣f (3)(c)
∣∣∣ = ∣∣∣∣ 827c−7/3

∣∣∣∣
is clearly decreasing, so use c = 5 to get

M =
8

27
(5)−7/3.

Also, if x ∈ [5, 11], |x− 8|3 ≤ 33 = 27, so

|R2,8(x)| ≤
8

27
(5)−7/3 27

3!
=

4

3
(5)−7/3.

We can make the error bound even more general.
THEOREM 5.2.7: Taylor’s Approximation Theorem I (TAT I)

If f (k+1) is continuous on an interval I containing x = a, then there exists a constant N > 0 such that

|f(x)− Tk,a(x)| ≤ N |x− a|k+1

or
−N |x− a|k+1 ≤ f(x)− Tk,a(x) ≤ N |x− a|k+1.

Actually, N = M
(k+1)! from the inequality.

Let’s see how to use this to solve limits!
EXAMPLE 5.2.8

Evaluate lim
x→0

ex − 1− x

x2
using TAT I.

Solution. First, for f(x) = ex,
T3,0(x) = 1 + x+

x2

2!
+

x3

3!
,
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and we use TAT I to get
−Nx4 ≤ ex − 1− x− x2

2!
− x3

3!
≤ Nx4

where 0 < N ∈ R for x near 0. Then,

−Nx2 ≤ ex − 1− x

x2
− 1

2
− x

6
≤ Nx2.

By the Squeeze Theorem, since ±Nx2 → 0 as x → 0,

lim
x→0

[
ex − 1− x

x2
− 1

2
− x

6

]
= 0.

So,
lim
x→0

ex − 1− x

x2
= lim

x→0

[
1

2
+

x

6

]
=

1

2
.

Hold on tight for the next example.
EXAMPLE 5.2.9

Evaluate lim
x→0

ex
4

+ cos(x2)− 2

x4
using TAT I (twice).

Solution. First, for f(u) = eu, we know T1,0(u) = 1 + u. Also, for g(u) = cos(u), T3,0(x) = 1− u2

2! . So,
there exists 0 < N1, N2 ∈ R such that

−N1u
2 ≤ eu − 1− u ≤ N1u

2, u ∈ (−1, 1)

−N2u
4 ≤ cos(u)− 1 +

u2

2!
≤ N2u

4, u ∈ (−1, 1).

In the first equation, sub u = x4 for x ∈ (−1, 1) (so u ∈ (−1, 1) too):

−N1x
8 ≤ ex

4

− 1− x4 ≤ N1x
8. (⋆)

In the second equation, sub u = x2 for x ∈ (−1, 1) (so u ∈ (−1, 1) too):

−N2x
8 ≤ cos(x2)− 1 +

x4

2!
≤ N2x

8. (⋆⋆)

Add (⋆) and (⋆⋆):

− (N1 +N2)x
8 ≤ ex

4

− 1− x4 + cos(x2)− 1 +
x4

2
≤ (N1 +N2)x

8.

=⇒ −(N1 +N2)x
8 ≤ ex

4

+ cos(x2)− 2− x4

2
≤ (N1 +N2)x

8.

=⇒ −(N1 +N2)x
4 ≤ ex

4

+ cos(x2)− 2

x4
− 1

2
≤ (N1 +N2)x

4.

Using the Squeeze Theorem, we get

lim
x→0

[
ex

4

+ cos(x2)− 2

x4
− 1

2

]
= 0 =⇒ lim

x→0

[
ex

4

+ cos(x2)− 2

x4

]
=

1

2
.

Remark: You could have also used LHR twice to get the answer.
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5.3 Big-O
This notation is used to reflect relative orders of magnitude.

DEFINITION 5.3.1: Big-O (Real Analysis, Point)

Let f and g be functions defined on a neighbourhood of +∞ in R.
The statement:

f(x) = O(g(x)) as x → a

is equivalent to:

∃M ∈ R≥0 : ∃ϵ ∈ R>0 : ∀x ∈ R : 0 < |x− a| < ε =⇒ |f(x)| ≤ M |g(x)|.

We can see that if f(x) = O(g(x)), then f has order of magnitude less than (or equal to) g near x = a.
REMARK 5.3.2

We can always insist 0 < ε ≤ 1 since once we find an ε that works, so will any smaller ε value.

EXAMPLE 5.3.3

Suppose f(x) = O(xn) for some n ∈ N as x → 0. Find lim
x→0

f(x).

Solution. Since lim
x→0

−M |xn| = lim
x→0

M |xn|, by the Squeeze Theorem we get

lim
x→0

f(x) = 0.

So, if f(x) = O(xn), we get lim
x→0

f(x) = 0. Denote this as

lim
x→0

O(xn) = 0.

The idea is to compare functions though, so let’s extend our definition.
DEFINITION 5.3.4

Suppose f and g are defined on an open interval containing x = a, except possibly at x = a, write

f(x) = g(x) +O(h(x)) as x → a

if
f(x)− g(x) = O(h(x)) as x → a.

This means f(x) ≈ g(x) near x = a, with error that has magnitude at most h(x).

EXAMPLE 5.3.5

We saw earlier than for f(x) = √
1 + x, if we use T2,0(x) to approximate it, then

|f(x)− T2,0(x)| ≤
3

48
x3

and f(x) ≥ T2,0(x). So √
1 + x− T2,0(x) = O(x3)

or √
1 + x = T2,0(x) +O(x3).

https://proofwiki.org/wiki/Definition:Big-O_Notation/Real/Point
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We can collect this result as a theorem:
THEOREM 5.3.6: Taylor’s Approximation Theorem II (TAT II)

Let r > 0. If f is (n+ 1)-times differentiable on [−r, r] and f (n+1) is continuous on [−r, r], then

f(x) = Tn,0(x) +O(xn+1) as x → 0.

Proof: Since f (n+1) is continuous on [−r, r], the EVT says that it attains its maximum. Let M be chosen
so that

|f (n+1)(x)| ≤ M for x ∈ [−r, r].

Taylor’s Theorem says there exists c between x and 0 so that

|f(x)− Tn,0(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣ ≤ M

(n+ 1)!
|xn+1|.

So, f(x)− Tn,0(x) = O(xn+1) as x → 0, as desired.

Q: If f(x) = O(xm) and g(x) = O(xn) as x → 0, what can we say about f + g? Well, there exists M1,M2 > 0
so that

|f(x)| ≤ M1|xm| and |g(x)| ≤ M2|xn|
for x near zero. Using the triangle equality, we obtain

|f(x) + g(x)| ≤ M1x
n +M2x

m as x → 0.

Let k = min(n,m), then for x near zero (x ∈ [−1, 1]), we get
xm ≤ xk, xn ≤ xk,

so
|f(x) + g(x)| ≤ (M1 +M2)x

k

or f(x) + g(x) = O(xk) for k = min(n,m). We denote this as O(xn) +O(xm) = O(xk), where k = min(n,m).
Let’s collect all the arithmetic properties of Big-O.

THEOREM 5.3.7: Arithmetic of Big-O

Let f(x) = O(xn) and g(x) = O(xm) as x → 0 for m,n ∈ R.
(1) c(O(xn)) = O(xn), i.e., cf(x) = O(xn).
(2) O(xn) +O(xm) = O(xk) where k = min(n,m).
(3) O(xn)O(xm) = O(xn+m), i.e., f(x)g(x) = O(xn+m).
(4) If k ≤ n, then f(x) = O(xk).
(5) If k ≤ n, then 1

xkO(xn) = O(xn−k), i.e., f(x)
xk = O(xn−k).

(6) f(uk) = O(ukn), i.e., we can sub in x = uk.

Proof: Exercises.

EXAMPLE 5.3.8

We know √
1 + x− T2,0(x) = O(x3), but what about(√

1 + x− T2,0(x)
)
x5︸ ︷︷ ︸

O(x3+5)=O(x8)

+ x10︸︷︷︸
O(x10)

?

Clearly, we get O(x8) by property 2.
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We can also use Big-O notation to help us evaluate limits, let’s look at some examples.
EXAMPLE 5.3.9

Evaluate lim
x→0

ex
2 − 1− x2

3
using Big-O.

Solution. Note that T1,0(x) = 1 + x for ex, so

ex − (1 + x) = O(x2)

by TAT II. So, by arithmetic rules of Big-O (sub x = u2),

eu
2

− (1 + u2) = O((u2)2) = O(u4).

Therefore,
ex

2 − 1− x2

x3
=

O(x4)

x3
= O(x),

and so
lim
x→0

ex
2 − 1− x2

x3
= lim

x→0
O(x) = 0.

EXAMPLE 5.3.10

Evaluate (ex − 1)[cos(x)− 1]x3

(ex2 − 1) sin(x2) sin2(x)
using Big-O.

Solution. As an exercise, first find/show:
ex = 1 + x+O(x2),

cosx = 1− x2

2
+O(x4),

sinx = x+O(x3).

Then, we get
sin2(x) = (x+O(x3))2 = x2 + 2xO(x3) +O(x3)2 = x2 +O(x4) +O(x6) = x2 +O(x4).

(ex − 1)[cos(x)− 1]x3 = (x+O(x2))(−x2

2 +O(x4))x3

= (−x3

2 +O(x4) +O(x5) +O(x6))x3

= −x6

2 +O(x7) +O(x8) +O(x9)

= −x6

2 +O(x7).

Next,

(ex
2

− 1) sin(x2) sin2(x)

= (x2 +O(x4))(x2 +O(x6))(x2 +O(x4))

= (x4 +O(x6) +O(x8) +O(x10))(x2 +O(x4))

= (x4 +O(x6))(x2 +O(x4))

= x6 +O(x8) +O(x8) +O(x10)

= x6 +O(x8).
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Putting it together,

lim
x→0

(ex − 1)[cos(x)− 1]x3

(ex2 − 1) sin(x2) sin2(x)
= lim

x→0

−x6

2 +O(x7)

x6 +O(x8)

= lim
x→0

− 1
2 +O(x)

1 +O(x2)

=
− 1

2

1

= −1

2
.

Characterization of Taylor Polynomials
Consider cos(x2)− 1. We know

cos(x)− 1 = −x2

2
+O(x4) =⇒ cos(x2)− 1 = −x4

2
+O(x8).

However, we know
cos(x2)− 1 = T7,0(x) +O(x8).

So, is T7,0(x) = −x4

2 ? Yes! Let’s examine the theorem.
THEOREM 5.3.11: Characterization of Taylor Polynomials

Let r > 0, f be (n + 1)-times differentiable on [−r, r], and f (n+1) be continuous on [−r, r]. If p is a
polynomial of degree at most n such that f(x) = p(x) +O(xn+1), then

p(x) = Tn,0(x).

Proof: First, we need the following fact:
• If p is a polynomial of degree at most n and p(x) = O(xn+1), then p(x) = 0 for all x.

The proof is an exercise and uses induction.
By assumption,

f(x)− p(x) = O(xn+1).

Using TAT II, we have
f(x)− Tn,0(x) = O(xn+1).

So,
p(x)− Tn,0(x) = [f(x)− Tn,0(x)]− [f(x)− p(x)] = O(xn+1) +O(xn+1) = O(xn+1).

But p(x)− Tn,0(x) is a polynomial of degree at most n, so by the fact above, for all x we have

p(x)− Tn,0(x) = 0.

Therefore, p(x) = Tn,0(x).

EXAMPLE 5.3.12

Previously, we calculated
(ex − 1)[cos(x)− 1]x3 = −x6

2
+O(x7),
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so for this function we have
T6,0(x) = −x6

2
.

The derivatives would be terrible to take in practice.
• Q: What is f (4)(0), f (5)(0) and f (6)(0)?
• A: We know that

T6,0(x) = f(0) + f ′(0) +
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5 +

f (6)(0)

6!
x6.

Matching coefficients to T6,0(x) = −x6

2 , we get

f (4)(0) = 0, f (5)(0) = 0,
f (6)(0)

6!
= −1

2
=⇒ f (6)(0) = −6!

2
= −360.
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